This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub fffelix-huang/CP-stuff
#include "library/geometry/closest-pair.hpp"
#pragma once #include <vector> #include <algorithm> #include <functional> #include <limits> #include "point.hpp" namespace felix { namespace geometry { template<class T> T closest_pair(std::vector<Point<T>> a) { std::sort(a.begin(), a.end(), [](Point<T> a, Point<T> b) { return a.x < b.x; }); auto square = [&](T x) { return x * x; }; std::function<T(int, int)> solve = [&](int l, int r) { if(l + 1 == r) { return std::numeric_limits<T>::max(); } int mid = (l + r) / 2; T mid_x = a[mid].x; T ans = std::min(solve(l, mid), solve(mid, r)); std::inplace_merge(a.begin() + l, a.begin() + mid, a.begin() + r, [](Point<T> a, Point<T> b) { return a.y < b.y; }); std::vector<Point<T>> p; for(int i = l; i < r; i++) { if(square(a[i].x - mid_x) < ans) { p.push_back(a[i]); } } for(int i = 0; i < (int) p.size(); i++) { for(int j = i + 1; j < (int) p.size(); j++) { ans = std::min(ans, square(p[i].x - p[j].x) + square(p[i].y - p[j].y)); if(square(p[i].y - p[j].y) > ans) { break; } } } return ans; }; return solve(0, a.size()); } } // namespace geometry } // namespace felix
#line 2 "library/geometry/closest-pair.hpp" #include <vector> #include <algorithm> #include <functional> #include <limits> #line 2 "library/geometry/point.hpp" #include <iostream> #include <cmath> namespace felix { namespace geometry { template<class T> struct Point { T x, y; Point(T a = 0, T b = 0) : x(a), y(b) {} Point(const std::pair<T, T>& p) : x(p.first), y(p.second) {} explicit constexpr operator std::pair<T, T>() const { return std::pair<T, T>(x, y); } constexpr Point& operator+=(const Point& rhs) & { x += rhs.x, y += rhs.y; return *this; } constexpr Point& operator-=(const Point& rhs) & { x -= rhs.x, y -= rhs.y; return *this; } constexpr Point& operator*=(const T& rhs) & { x *= rhs, y *= rhs; return *this; } constexpr Point& operator/=(const T& rhs) & { x /= rhs, y /= rhs; return *this; } constexpr Point operator+() const { return *this; } constexpr Point operator-() const { return Point(-x, -y); } friend constexpr Point operator+(Point lhs, Point rhs) { return lhs += rhs; } friend constexpr Point operator-(Point lhs, Point rhs) { return lhs -= rhs; } friend constexpr Point operator*(Point lhs, T rhs) { return lhs *= rhs; } friend constexpr Point operator/(Point lhs, T rhs) { return lhs /= rhs; } constexpr bool operator==(const Point& rhs) const { return x == rhs.x && y == rhs.y; } constexpr bool operator!=(const Point& rhs) const { return !(*this == rhs); } // rotate counter-clockwise constexpr Point rotate(T theta) const { T sin_t = std::sin(theta), cos_t = std::cos(theta); return Point(x * cos_t - y * sin_t, x * sin_t + y * cos_t); } friend constexpr T abs2(Point p) { return p.x * p.x + p.y * p.y; } friend constexpr long double abs(Point p) { return std::sqrt(abs2(p)); } friend constexpr long double angle(Point p) { return std::atan2(p.y, p.x); } friend constexpr T dot(Point lhs, Point rhs) { return lhs.x * rhs.x + lhs.y * rhs.y; } friend constexpr T cross(Point lhs, Point rhs) { return lhs.x * rhs.y - lhs.y * rhs.x; } friend constexpr std::istream& operator>>(std::istream& in, Point& p) { return in >> p.x >> p.y; } }; } // namespace geometry } // namespace felix #line 7 "library/geometry/closest-pair.hpp" namespace felix { namespace geometry { template<class T> T closest_pair(std::vector<Point<T>> a) { std::sort(a.begin(), a.end(), [](Point<T> a, Point<T> b) { return a.x < b.x; }); auto square = [&](T x) { return x * x; }; std::function<T(int, int)> solve = [&](int l, int r) { if(l + 1 == r) { return std::numeric_limits<T>::max(); } int mid = (l + r) / 2; T mid_x = a[mid].x; T ans = std::min(solve(l, mid), solve(mid, r)); std::inplace_merge(a.begin() + l, a.begin() + mid, a.begin() + r, [](Point<T> a, Point<T> b) { return a.y < b.y; }); std::vector<Point<T>> p; for(int i = l; i < r; i++) { if(square(a[i].x - mid_x) < ans) { p.push_back(a[i]); } } for(int i = 0; i < (int) p.size(); i++) { for(int j = i + 1; j < (int) p.size(); j++) { ans = std::min(ans, square(p[i].x - p[j].x) + square(p[i].y - p[j].y)); if(square(p[i].y - p[j].y) > ans) { break; } } } return ans; }; return solve(0, a.size()); } } // namespace geometry } // namespace felix