This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub fffelix-huang/CP-stuff
#include "library/math/prime-enumerate.hpp"
#pragma once #include <vector> #include <cmath> namespace felix { // 2, 3, 5, 7, ... std::vector<int> prime_enumerate(int N) { std::vector<bool> sieve(N / 3 + 1, 1); for(int p = 5, d = 4, i = 1, sqn = std::sqrt(N); p <= sqn; p += d = 6 - d, i++) { if(!sieve[i]) { continue; } for(int q = p * p / 3, r = d * p / 3 + (d * p % 3 == 2), s = 2 * p, qe = sieve.size(); q < qe; q += r = s - r) { sieve[q] = 0; } } std::vector<int> ret{2, 3}; for(int p = 5, d = 4, i = 1; p <= N; p += d = 6 - d, i++) { if(sieve[i]) { ret.push_back(p); } } while(!ret.empty() && ret.back() > N) { ret.pop_back(); } return ret; } } // namespace felix
#line 2 "library/math/prime-enumerate.hpp" #include <vector> #include <cmath> namespace felix { // 2, 3, 5, 7, ... std::vector<int> prime_enumerate(int N) { std::vector<bool> sieve(N / 3 + 1, 1); for(int p = 5, d = 4, i = 1, sqn = std::sqrt(N); p <= sqn; p += d = 6 - d, i++) { if(!sieve[i]) { continue; } for(int q = p * p / 3, r = d * p / 3 + (d * p % 3 == 2), s = 2 * p, qe = sieve.size(); q < qe; q += r = s - r) { sieve[q] = 0; } } std::vector<int> ret{2, 3}; for(int p = 5, d = 4, i = 1; p <= N; p += d = 6 - d, i++) { if(sieve[i]) { ret.push_back(p); } } while(!ret.empty() && ret.back() > N) { ret.pop_back(); } return ret; } } // namespace felix