This documentation is automatically generated by online-judge-tools/verification-helper
#include "library/string/rolling-hash.hpp"
using H = rolling_hash<modint61>;
H s("aaa"), t("aa");
assert(s.get() * 2 == t.get() * 3);
t.add_char('a'); // t = "aaa"
assert(s.get() == t.get());
assert(s.get(0, 2) == t.get(1, 3)); // [l, r)
assert(s.get() + t.get() == H("aaaaaa").get());
#pragma once
#include <vector>
#include <cstring>
#include <cassert>
#include <chrono>
#include <random>
#include "../modint/modint61.hpp"
namespace felix {
template<class M = modint61>
struct rolling_hash {
static std::vector<M> power;
static M base;
static void prepare(int _n) {
if(power.size() > 1 && power[0] != base) {
power = {M(1)};
}
while((int) power.size() <= _n) {
power.emplace_back(power.back() * base);
}
}
rolling_hash() : n(0) {}
rolling_hash(const std::string& s, M B = generate_base()) : n(s.size()), pref(s.size() + 1) {
base = B;
for(int i = 0; i < n; i++) {
pref[i + 1] = pref[i] * base + s[i];
}
prepare(n);
}
constexpr int size() const { return n; }
constexpr int length() const { return n; }
void add_char(char c) {
pref.emplace_back(pref[n] * base + c);
n++;
prepare(n);
}
struct Hash {
M val;
int len;
constexpr Hash() : len(0) {}
constexpr Hash(const M& x, int L) : val(x), len(L) {}
constexpr int size() const { return len; }
constexpr int length() const { return len; }
// S + T
constexpr Hash& operator+=(const Hash& rhs) & {
val = val * power[rhs.len] + rhs.val;
len += rhs.len;
return *this;
}
// S + ... + S
constexpr Hash& operator*=(int n) & {
if(len > 0) {
M a1 = val;
M r = (len < (int) power.size() ? power[len] : base.pow(len));
val = a1 * (r.pow(n) - 1U) / (r - 1U);
len *= n;
}
return *this;
}
friend constexpr Hash operator+(Hash lhs, Hash rhs) { return lhs += rhs; }
friend constexpr Hash operator*(Hash s, int n) { return s *= n; }
constexpr bool operator==(const Hash& rhs) const { return val == rhs.val && len == rhs.len; }
constexpr bool operator<(const Hash& rhs) const { return val.val() < rhs.val.val() || (val.val() == rhs.val.val() && len < rhs.len); }
};
// [l, r)
constexpr Hash get(int l, int r) const {
assert(0 <= l && l <= r && r <= n);
return Hash(pref[r] - pref[l] * power[r - l], r - l);
}
constexpr Hash get() const {
return Hash(pref[n], n);
}
static inline M generate_base(bool new_base = false) {
static M B(0);
if(B.val() == 0 || new_base) {
std::mt19937_64 mt(std::chrono::steady_clock::now().time_since_epoch().count());
std::uniform_int_distribution<unsigned long long> rd(1, M::mod() - 1);
B = M(rd(mt));
}
return B;
}
private:
int n;
std::vector<M> pref;
};
template<class M> std::vector<M> rolling_hash<M>::power{M(1)};
template<class M> M rolling_hash<M>::base;
} // namespace felix
#line 2 "library/string/rolling-hash.hpp"
#include <vector>
#include <cstring>
#include <cassert>
#include <chrono>
#include <random>
#line 2 "library/modint/modint61.hpp"
#include <iostream>
#line 4 "library/modint/modint61.hpp"
namespace felix {
// 2^61 - 1
struct modint61 {
private:
using M = modint61;
static constexpr long long md = (1LL << 61) - 1;
public:
static constexpr long long mod() { return md; }
constexpr modint61() : v(0) {}
// 0 <= x < md * 2
constexpr explicit modint61(long long x) : v(x >= md ? x - md : x) {}
constexpr long long val() const { return v; }
constexpr M inv() const { return pow(md - 2); }
constexpr M& operator+=(const M& rhs) & {
v += rhs.v;
if(v >= md) {
v -= md;
}
return *this;
}
constexpr M& operator-=(const M& rhs) & {
v -= rhs.v;
if(v < 0) {
v += md;
}
return *this;
}
constexpr M& operator*=(const M& rhs) & {
using ull = unsigned long long;
ull uu = (ull) hi() * rhs.hi() * 2;
ull ll = (ull) lo() * rhs.lo();
ull lu = (ull) hi() * rhs.lo() + (ull) lo() * rhs.hi();
ull sum = uu + ll + ((lu & ((1ULL << 30) - 1)) << 31) + (lu >> 30);
v = (sum >> 61) + (sum & ull(md));
if(v >= md) {
v -= md;
}
return *this;
}
constexpr M& operator/=(const M& rhs) & {
return *this *= rhs.inv();
}
constexpr M& operator+=(const unsigned int& rhs) & { return *this += M(rhs); }
constexpr M& operator-=(const unsigned int& rhs) & { return *this -= M(rhs); }
constexpr M pow(long long n) const {
assert(n >= 0);
M ans(1), a = *this;
while(n) {
if(n & 1) {
ans *= a;
}
a *= a;
n >>= 1;
}
return ans;
}
friend constexpr M operator+(M lhs, M rhs) { return lhs += rhs; }
friend constexpr M operator-(M lhs, M rhs) { return lhs -= rhs; }
friend constexpr M operator*(M lhs, M rhs) { return lhs *= rhs; }
friend constexpr M operator/(M lhs, M rhs) { return lhs /= rhs; }
friend constexpr M operator+(M lhs, unsigned int rhs) { return lhs += rhs; }
friend constexpr M operator-(M lhs, unsigned int rhs) { return lhs -= rhs; }
constexpr M operator+() const { return *this; }
constexpr M operator-() const { return M(md - v); }
constexpr bool operator==(const M &rhs) const { return v == rhs.v; }
constexpr bool operator!=(const M &rhs) const { return v != rhs.v; }
friend std::ostream& operator<<(std::ostream& out, const M& num) {
return out << num.v;
}
private:
long long v;
inline constexpr unsigned int hi() const { return v >> 31; }
inline constexpr unsigned int lo() const { return v & ((1ULL << 31) - 1); }
};
} // namespace felix
#line 8 "library/string/rolling-hash.hpp"
namespace felix {
template<class M = modint61>
struct rolling_hash {
static std::vector<M> power;
static M base;
static void prepare(int _n) {
if(power.size() > 1 && power[0] != base) {
power = {M(1)};
}
while((int) power.size() <= _n) {
power.emplace_back(power.back() * base);
}
}
rolling_hash() : n(0) {}
rolling_hash(const std::string& s, M B = generate_base()) : n(s.size()), pref(s.size() + 1) {
base = B;
for(int i = 0; i < n; i++) {
pref[i + 1] = pref[i] * base + s[i];
}
prepare(n);
}
constexpr int size() const { return n; }
constexpr int length() const { return n; }
void add_char(char c) {
pref.emplace_back(pref[n] * base + c);
n++;
prepare(n);
}
struct Hash {
M val;
int len;
constexpr Hash() : len(0) {}
constexpr Hash(const M& x, int L) : val(x), len(L) {}
constexpr int size() const { return len; }
constexpr int length() const { return len; }
// S + T
constexpr Hash& operator+=(const Hash& rhs) & {
val = val * power[rhs.len] + rhs.val;
len += rhs.len;
return *this;
}
// S + ... + S
constexpr Hash& operator*=(int n) & {
if(len > 0) {
M a1 = val;
M r = (len < (int) power.size() ? power[len] : base.pow(len));
val = a1 * (r.pow(n) - 1U) / (r - 1U);
len *= n;
}
return *this;
}
friend constexpr Hash operator+(Hash lhs, Hash rhs) { return lhs += rhs; }
friend constexpr Hash operator*(Hash s, int n) { return s *= n; }
constexpr bool operator==(const Hash& rhs) const { return val == rhs.val && len == rhs.len; }
constexpr bool operator<(const Hash& rhs) const { return val.val() < rhs.val.val() || (val.val() == rhs.val.val() && len < rhs.len); }
};
// [l, r)
constexpr Hash get(int l, int r) const {
assert(0 <= l && l <= r && r <= n);
return Hash(pref[r] - pref[l] * power[r - l], r - l);
}
constexpr Hash get() const {
return Hash(pref[n], n);
}
static inline M generate_base(bool new_base = false) {
static M B(0);
if(B.val() == 0 || new_base) {
std::mt19937_64 mt(std::chrono::steady_clock::now().time_since_epoch().count());
std::uniform_int_distribution<unsigned long long> rd(1, M::mod() - 1);
B = M(rd(mt));
}
return B;
}
private:
int n;
std::vector<M> pref;
};
template<class M> std::vector<M> rolling_hash<M>::power{M(1)};
template<class M> M rolling_hash<M>::base;
} // namespace felix