This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub fffelix-huang/CP-stuff
#define PROBLEM "https://judge.yosupo.jp/problem/bitwise_and_convolution" #include <iostream> #include "../../../library/modint/modint.hpp" #include "../../../library/convolution/subset-convolution.hpp" using namespace std; using namespace felix; using mint = modint998244353; int main() { ios::sync_with_stdio(false); cin.tie(0); int n; cin >> n; n = 1 << n; vector<mint> a(n); for(int i = 0; i < n; i++) { cin >> a[i]; } vector<mint> b(n); for(int i = 0; i < n; i++) { cin >> b[i]; } vector<mint> c(n), d(n); for(int i = 0; i < n; i++) { c[i] = a[~i & (n - 1)]; d[i] = b[~i & (n - 1)]; } auto e = and_convolution(a, b); auto f = or_convolution(c, d); for(int i = 0; i < n; i++) { assert(e[i] == f[~i & (n - 1)]); cout << e[i] << " \n"[i == n - 1]; } return 0; }
#line 1 "test/convolution/subset-convolution/yosupo-Bitwise-And-Convolution.test.cpp" #define PROBLEM "https://judge.yosupo.jp/problem/bitwise_and_convolution" #include <iostream> #line 3 "library/modint/modint.hpp" #include <vector> #include <algorithm> #include <cassert> #include <type_traits> #line 3 "library/misc/type-traits.hpp" #include <numeric> #line 5 "library/misc/type-traits.hpp" namespace felix { namespace internal { #ifndef _MSC_VER template<class T> using is_signed_int128 = typename std::conditional<std::is_same<T, __int128_t>::value || std::is_same<T, __int128>::value, std::true_type, std::false_type>::type; template<class T> using is_unsigned_int128 = typename std::conditional<std::is_same<T, __uint128_t>::value || std::is_same<T, unsigned __int128>::value, std::true_type, std::false_type>::type; template<class T> using make_unsigned_int128 = typename std::conditional<std::is_same<T, __int128_t>::value, __uint128_t, unsigned __int128>; template<class T> using is_integral = typename std::conditional<std::is_integral<T>::value || is_signed_int128<T>::value || is_unsigned_int128<T>::value, std::true_type, std::false_type>::type; template<class T> using is_signed_int = typename std::conditional<(is_integral<T>::value && std::is_signed<T>::value) || is_signed_int128<T>::value, std::true_type, std::false_type>::type; template<class T> using is_unsigned_int = typename std::conditional<(is_integral<T>::value && std::is_unsigned<T>::value) || is_unsigned_int128<T>::value, std::true_type, std::false_type>::type; template<class T> using to_unsigned = typename std::conditional<is_signed_int128<T>::value, make_unsigned_int128<T>, typename std::conditional<std::is_signed<T>::value, std::make_unsigned<T>, std::common_type<T>>::type>::type; #else template<class T> using is_integral = typename std::is_integral<T>; template<class T> using is_signed_int = typename std::conditional<is_integral<T>::value && std::is_signed<T>::value, std::true_type, std::false_type>::type; template<class T> using is_unsigned_int = typename std::conditional<is_integral<T>::value && std::is_unsigned<T>::value, std::true_type, std::false_type>::type; template<class T> using to_unsigned = typename std::conditional<is_signed_int<T>::value, std::make_unsigned<T>, std::common_type<T>>::type; #endif template<class T> using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>; template<class T> using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>; template<class T> using to_unsigned_t = typename to_unsigned<T>::type; template<class T> struct safely_multipliable {}; template<> struct safely_multipliable<short> { using type = int; }; template<> struct safely_multipliable<unsigned short> { using type = unsigned int; }; template<> struct safely_multipliable<int> { using type = long long; }; template<> struct safely_multipliable<unsigned int> { using type = unsigned long long; }; template<> struct safely_multipliable<long long> { using type = __int128; }; template<> struct safely_multipliable<unsigned long long> { using type = __uint128_t; }; template<class T> using safely_multipliable_t = typename safely_multipliable<T>::type; } // namespace internal } // namespace felix #line 2 "library/math/safe-mod.hpp" namespace felix { namespace internal { template<class T> constexpr T safe_mod(T x, T m) { x %= m; if(x < 0) { x += m; } return x; } } // namespace internal } // namespace felix #line 3 "library/math/inv-gcd.hpp" namespace felix { namespace internal { template<class T> constexpr std::pair<T, T> inv_gcd(T a, T b) { a = safe_mod(a, b); if(a == 0) { return {b, 0}; } T s = b, t = a; T m0 = 0, m1 = 1; while(t) { T u = s / t; s -= t * u; m0 -= m1 * u; auto tmp = s; s = t; t = tmp; tmp = m0; m0 = m1; m1 = tmp; } if(m0 < 0) { m0 += b / s; } return {s, m0}; } } // namespace internal } // namespace felix #line 9 "library/modint/modint.hpp" namespace felix { template<int id> struct modint { public: static constexpr int mod() { return (id > 0 ? id : md); } static constexpr void set_mod(int m) { if(id > 0 || md == m) { return; } md = m; fact.resize(1); inv_fact.resize(1); invs.resize(1); } static constexpr void prepare(int n) { int sz = (int) fact.size(); if(sz == mod()) { return; } n = 1 << std::__lg(2 * n - 1); if(n < sz) { return; } if(n < (sz - 1) * 2) { n = std::min((sz - 1) * 2, mod() - 1); } fact.resize(n + 1); inv_fact.resize(n + 1); invs.resize(n + 1); for(int i = sz; i <= n; i++) { fact[i] = fact[i - 1] * i; } auto eg = internal::inv_gcd(fact.back().val(), mod()); assert(eg.first == 1); inv_fact[n] = eg.second; for(int i = n - 1; i >= sz; i--) { inv_fact[i] = inv_fact[i + 1] * (i + 1); } for(int i = n; i >= sz; i--) { invs[i] = inv_fact[i] * fact[i - 1]; } } constexpr modint() : v(0) {} template<class T, internal::is_signed_int_t<T>* = nullptr> constexpr modint(T x) : v(x >= 0 ? x % mod() : x % mod() + mod()) {} template<class T, internal::is_unsigned_int_t<T>* = nullptr> constexpr modint(T x) : v(x % mod()) {} constexpr int val() const { return v; } constexpr modint inv() const { if(id > 0 && v < std::min(mod() >> 1, 1 << 18)) { prepare(v); return invs[v]; } else { auto eg = internal::inv_gcd(v, mod()); assert(eg.first == 1); return eg.second; } } constexpr modint& operator+=(const modint& rhs) & { v += rhs.v; if(v >= mod()) { v -= mod(); } return *this; } constexpr modint& operator-=(const modint& rhs) & { v -= rhs.v; if(v < 0) { v += mod(); } return *this; } constexpr modint& operator*=(const modint& rhs) & { v = 1LL * v * rhs.v % mod(); return *this; } constexpr modint& operator/=(const modint& rhs) & { return *this *= rhs.inv(); } friend constexpr modint operator+(modint lhs, modint rhs) { return lhs += rhs; } friend constexpr modint operator-(modint lhs, modint rhs) { return lhs -= rhs; } friend constexpr modint operator*(modint lhs, modint rhs) { return lhs *= rhs; } friend constexpr modint operator/(modint lhs, modint rhs) { return lhs /= rhs; } constexpr modint operator+() const { return *this; } constexpr modint operator-() const { return modint() - *this; } constexpr bool operator==(const modint& rhs) const { return v == rhs.v; } constexpr bool operator!=(const modint& rhs) const { return v != rhs.v; } constexpr modint pow(long long p) const { modint a(*this), res(1); if(p < 0) { a = a.inv(); p = -p; } while(p) { if(p & 1) { res *= a; } a *= a; p >>= 1; } return res; } constexpr bool has_sqrt() const { if(mod() == 2 || v == 0) { return true; } if(pow((mod() - 1) / 2).val() != 1) { return false; } return true; } constexpr modint sqrt() const { if(mod() == 2 || v < 2) { return *this; } assert(pow((mod() - 1) / 2).val() == 1); modint b = 1; while(b.pow((mod() - 1) >> 1).val() == 1) { b += 1; } int m = mod() - 1, e = __builtin_ctz(m); m >>= e; modint x = modint(*this).pow((m - 1) >> 1); modint y = modint(*this) * x * x; x *= v; modint z = b.pow(m); while(y.val() != 1) { int j = 0; modint t = y; while(t.val() != 1) { t *= t; j++; } z = z.pow(1LL << (e - j - 1)); x *= z, z *= z, y *= z; e = j; } return x; } friend std::istream& operator>>(std::istream& in, modint& num) { long long x; in >> x; num = modint<id>(x); return in; } friend std::ostream& operator<<(std::ostream& out, const modint& num) { return out << num.val(); } public: static std::vector<modint> fact, inv_fact, invs; private: int v; static int md; }; template<int id> int modint<id>::md = 998244353; template<int id> std::vector<modint<id>> modint<id>::fact = {1}; template<int id> std::vector<modint<id>> modint<id>::inv_fact = {1}; template<int id> std::vector<modint<id>> modint<id>::invs = {0}; using modint998244353 = modint<998244353>; using modint1000000007 = modint<1000000007>; namespace internal { template<class T> struct is_modint : public std::false_type {}; template<int id> struct is_modint<modint<id>> : public std::true_type {}; template<class T, class ENABLE = void> struct is_static_modint : public std::false_type {}; template<int id> struct is_static_modint<modint<id>, std::enable_if_t<(id > 0)>> : public std::true_type {}; template<class T> using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>; template<class T, class ENABLE = void> struct is_dynamic_modint : public std::false_type {}; template<int id> struct is_dynamic_modint<modint<id>, std::enable_if_t<(id <= 0)>> : public std::true_type {}; template<class T> using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>; } // namespace internal } // namespace felix #line 6 "library/convolution/subset-convolution.hpp" namespace felix { template<class T, class F> void fwht(std::vector<T>& a, F f) { const int n = (int) a.size(); assert(__builtin_popcount(n) == 1); for(int i = 1; i < n; i <<= 1) { for(int j = 0; j < n; j += i << 1) { for(int k = 0; k < i; k++) { f(a[j + k], a[i + j + k]); } } } } template<class T> void or_transform(std::vector<T>& a, bool inv) { fwht(a, [&](T& x, T& y) { y += x * (inv ? -1 : +1); }); } template<class T> void and_transform(std::vector<T>& a, bool inv) { fwht(a, [&](T& x, T& y) { x += y * (inv ? -1 : +1); }); } template<class T> void xor_transform(std::vector<T>& a, bool inv) { fwht(a, [](T& x, T& y) { T z = x + y; y = x - y; x = z; }); if(inv) { if constexpr(internal::is_integral<T>::value) { for(auto& x : a) { x /= a.size(); } } else { T z = T(1) / T(a.size()); for(auto& x : a) { x *= z; } } } } template<class T> std::vector<T> or_convolution(std::vector<T> a, std::vector<T> b) { assert(a.size() == b.size()); or_transform(a, false); or_transform(b, false); for(int i = 0; i < (int) a.size(); i++) { a[i] *= b[i]; } or_transform(a, true); return a; } template<class T> std::vector<T> and_convolution(std::vector<T> a, std::vector<T> b) { assert(a.size() == b.size()); and_transform(a, false); and_transform(b, false); for(int i = 0; i < (int) a.size(); i++) { a[i] *= b[i]; } and_transform(a, true); return a; } template<class T> std::vector<T> xor_convolution(std::vector<T> a, std::vector<T> b) { assert(a.size() == b.size()); xor_transform(a, false); xor_transform(b, false); for (int i = 0; i < (int) a.size(); i++) { a[i] *= b[i]; } xor_transform(a, true); return a; } template<class T> std::vector<T> subset_convolution(const std::vector<T>& f, const std::vector<T>& g) { assert(f.size() == g.size()); const int n = (int) f.size(); assert(__builtin_popcount(n) == 1); const int lg = std::__lg(n); std::vector<std::vector<T>> fhat(lg + 1, std::vector<T>(n)), ghat(fhat), h(fhat); for(int mask = 0; mask < n; mask++) { fhat[__builtin_popcount(mask)][mask] = f[mask]; ghat[__builtin_popcount(mask)][mask] = g[mask]; } for(int i = 0; i <= lg; ++i) { or_transform(fhat[i], false); or_transform(ghat[i], false); } for(int mask = 0; mask < n; mask++) { for(int i = 0; i <= lg; ++i) { for(int j = 0; j <= i; ++j) { h[i][mask] += fhat[j][mask] * ghat[i - j][mask]; } } } for(int i = 0; i <= lg; ++i) { or_transform(h[i], true); } std::vector<T> result(n); for(int mask = 0; mask < n; mask++) { result[mask] = h[__builtin_popcount(mask)][mask]; } return result; } } // namespace felix #line 6 "test/convolution/subset-convolution/yosupo-Bitwise-And-Convolution.test.cpp" using namespace std; using namespace felix; using mint = modint998244353; int main() { ios::sync_with_stdio(false); cin.tie(0); int n; cin >> n; n = 1 << n; vector<mint> a(n); for(int i = 0; i < n; i++) { cin >> a[i]; } vector<mint> b(n); for(int i = 0; i < n; i++) { cin >> b[i]; } vector<mint> c(n), d(n); for(int i = 0; i < n; i++) { c[i] = a[~i & (n - 1)]; d[i] = b[~i & (n - 1)]; } auto e = and_convolution(a, b); auto f = or_convolution(c, d); for(int i = 0; i < n; i++) { assert(e[i] == f[~i & (n - 1)]); cout << e[i] << " \n"[i == n - 1]; } return 0; }