This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "https://judge.yosupo.jp/problem/subset_convolution"
#include <iostream>
#include <vector>
#include "../../../library/modint/modint.hpp"
#include "../../../library/convolution/subset-convolution.hpp"
using namespace std;
using namespace felix;
using mint = modint998244353;
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
int n;
cin >> n;
n = 1 << n;
vector<mint> a(n);
for(int i = 0; i < n; i++) {
cin >> a[i];
}
vector<mint> b(n);
for(int i = 0; i < n; i++) {
cin >> b[i];
}
auto c = subset_convolution(a, b);
for(int i = 0; i < n; i++) {
cout << c[i] << " \n"[i == n - 1];
}
return 0;
}
#line 1 "test/convolution/subset-convolution/yosupo-Subset-Convolution.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/subset_convolution"
#include <iostream>
#include <vector>
#line 4 "library/modint/modint.hpp"
#include <algorithm>
#include <cassert>
#include <type_traits>
#line 3 "library/misc/type-traits.hpp"
#include <numeric>
#line 5 "library/misc/type-traits.hpp"
namespace felix {
namespace internal {
#ifndef _MSC_VER
template<class T> using is_signed_int128 = typename std::conditional<std::is_same<T, __int128_t>::value || std::is_same<T, __int128>::value, std::true_type, std::false_type>::type;
template<class T> using is_unsigned_int128 = typename std::conditional<std::is_same<T, __uint128_t>::value || std::is_same<T, unsigned __int128>::value, std::true_type, std::false_type>::type;
template<class T> using make_unsigned_int128 = typename std::conditional<std::is_same<T, __int128_t>::value, __uint128_t, unsigned __int128>;
template<class T> using is_integral = typename std::conditional<std::is_integral<T>::value || is_signed_int128<T>::value || is_unsigned_int128<T>::value, std::true_type, std::false_type>::type;
template<class T> using is_signed_int = typename std::conditional<(is_integral<T>::value && std::is_signed<T>::value) || is_signed_int128<T>::value, std::true_type, std::false_type>::type;
template<class T> using is_unsigned_int = typename std::conditional<(is_integral<T>::value && std::is_unsigned<T>::value) || is_unsigned_int128<T>::value, std::true_type, std::false_type>::type;
template<class T> using to_unsigned = typename std::conditional<is_signed_int128<T>::value, make_unsigned_int128<T>, typename std::conditional<std::is_signed<T>::value, std::make_unsigned<T>, std::common_type<T>>::type>::type;
#else
template<class T> using is_integral = typename std::is_integral<T>;
template<class T> using is_signed_int = typename std::conditional<is_integral<T>::value && std::is_signed<T>::value, std::true_type, std::false_type>::type;
template<class T> using is_unsigned_int = typename std::conditional<is_integral<T>::value && std::is_unsigned<T>::value, std::true_type, std::false_type>::type;
template<class T> using to_unsigned = typename std::conditional<is_signed_int<T>::value, std::make_unsigned<T>, std::common_type<T>>::type;
#endif
template<class T> using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;
template<class T> using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;
template<class T> using to_unsigned_t = typename to_unsigned<T>::type;
template<class T> struct safely_multipliable {};
template<> struct safely_multipliable<short> { using type = int; };
template<> struct safely_multipliable<unsigned short> { using type = unsigned int; };
template<> struct safely_multipliable<int> { using type = long long; };
template<> struct safely_multipliable<unsigned int> { using type = unsigned long long; };
template<> struct safely_multipliable<long long> { using type = __int128; };
template<> struct safely_multipliable<unsigned long long> { using type = __uint128_t; };
template<class T> using safely_multipliable_t = typename safely_multipliable<T>::type;
} // namespace internal
} // namespace felix
#line 2 "library/math/safe-mod.hpp"
namespace felix {
namespace internal {
template<class T>
constexpr T safe_mod(T x, T m) {
x %= m;
if(x < 0) {
x += m;
}
return x;
}
} // namespace internal
} // namespace felix
#line 3 "library/math/inv-gcd.hpp"
namespace felix {
namespace internal {
template<class T>
constexpr std::pair<T, T> inv_gcd(T a, T b) {
a = safe_mod(a, b);
if(a == 0) {
return {b, 0};
}
T s = b, t = a;
T m0 = 0, m1 = 1;
while(t) {
T u = s / t;
s -= t * u;
m0 -= m1 * u;
auto tmp = s;
s = t;
t = tmp;
tmp = m0;
m0 = m1;
m1 = tmp;
}
if(m0 < 0) {
m0 += b / s;
}
return {s, m0};
}
} // namespace internal
} // namespace felix
#line 9 "library/modint/modint.hpp"
namespace felix {
template<int id>
struct modint {
public:
static constexpr int mod() { return (id > 0 ? id : md); }
static constexpr void set_mod(int m) {
if(id > 0 || md == m) {
return;
}
md = m;
fact.resize(1);
inv_fact.resize(1);
invs.resize(1);
}
static constexpr void prepare(int n) {
int sz = (int) fact.size();
if(sz == mod()) {
return;
}
n = 1 << std::__lg(2 * n - 1);
if(n < sz) {
return;
}
if(n < (sz - 1) * 2) {
n = std::min((sz - 1) * 2, mod() - 1);
}
fact.resize(n + 1);
inv_fact.resize(n + 1);
invs.resize(n + 1);
for(int i = sz; i <= n; i++) {
fact[i] = fact[i - 1] * i;
}
auto eg = internal::inv_gcd(fact.back().val(), mod());
assert(eg.first == 1);
inv_fact[n] = eg.second;
for(int i = n - 1; i >= sz; i--) {
inv_fact[i] = inv_fact[i + 1] * (i + 1);
}
for(int i = n; i >= sz; i--) {
invs[i] = inv_fact[i] * fact[i - 1];
}
}
constexpr modint() : v(0) {}
template<class T, internal::is_signed_int_t<T>* = nullptr> constexpr modint(T x) : v(x >= 0 ? x % mod() : x % mod() + mod()) {}
template<class T, internal::is_unsigned_int_t<T>* = nullptr> constexpr modint(T x) : v(x % mod()) {}
constexpr int val() const { return v; }
constexpr modint inv() const {
if(id > 0 && v < std::min(mod() >> 1, 1 << 18)) {
prepare(v);
return invs[v];
} else {
auto eg = internal::inv_gcd(v, mod());
assert(eg.first == 1);
return eg.second;
}
}
constexpr modint& operator+=(const modint& rhs) & {
v += rhs.v;
if(v >= mod()) {
v -= mod();
}
return *this;
}
constexpr modint& operator-=(const modint& rhs) & {
v -= rhs.v;
if(v < 0) {
v += mod();
}
return *this;
}
constexpr modint& operator*=(const modint& rhs) & {
v = 1LL * v * rhs.v % mod();
return *this;
}
constexpr modint& operator/=(const modint& rhs) & {
return *this *= rhs.inv();
}
friend constexpr modint operator+(modint lhs, modint rhs) { return lhs += rhs; }
friend constexpr modint operator-(modint lhs, modint rhs) { return lhs -= rhs; }
friend constexpr modint operator*(modint lhs, modint rhs) { return lhs *= rhs; }
friend constexpr modint operator/(modint lhs, modint rhs) { return lhs /= rhs; }
constexpr modint operator+() const { return *this; }
constexpr modint operator-() const { return modint() - *this; }
constexpr bool operator==(const modint& rhs) const { return v == rhs.v; }
constexpr bool operator!=(const modint& rhs) const { return v != rhs.v; }
constexpr modint pow(long long p) const {
modint a(*this), res(1);
if(p < 0) {
a = a.inv();
p = -p;
}
while(p) {
if(p & 1) {
res *= a;
}
a *= a;
p >>= 1;
}
return res;
}
constexpr bool has_sqrt() const {
if(mod() == 2 || v == 0) {
return true;
}
if(pow((mod() - 1) / 2).val() != 1) {
return false;
}
return true;
}
constexpr modint sqrt() const {
if(mod() == 2 || v < 2) {
return *this;
}
assert(pow((mod() - 1) / 2).val() == 1);
modint b = 1;
while(b.pow((mod() - 1) >> 1).val() == 1) {
b += 1;
}
int m = mod() - 1, e = __builtin_ctz(m);
m >>= e;
modint x = modint(*this).pow((m - 1) >> 1);
modint y = modint(*this) * x * x;
x *= v;
modint z = b.pow(m);
while(y.val() != 1) {
int j = 0;
modint t = y;
while(t.val() != 1) {
t *= t;
j++;
}
z = z.pow(1LL << (e - j - 1));
x *= z, z *= z, y *= z;
e = j;
}
return x;
}
friend std::istream& operator>>(std::istream& in, modint& num) {
long long x;
in >> x;
num = modint<id>(x);
return in;
}
friend std::ostream& operator<<(std::ostream& out, const modint& num) {
return out << num.val();
}
public:
static std::vector<modint> fact, inv_fact, invs;
private:
int v;
static int md;
};
template<int id> int modint<id>::md = 998244353;
template<int id> std::vector<modint<id>> modint<id>::fact = {1};
template<int id> std::vector<modint<id>> modint<id>::inv_fact = {1};
template<int id> std::vector<modint<id>> modint<id>::invs = {0};
using modint998244353 = modint<998244353>;
using modint1000000007 = modint<1000000007>;
namespace internal {
template<class T> struct is_modint : public std::false_type {};
template<int id> struct is_modint<modint<id>> : public std::true_type {};
template<class T, class ENABLE = void> struct is_static_modint : public std::false_type {};
template<int id> struct is_static_modint<modint<id>, std::enable_if_t<(id > 0)>> : public std::true_type {};
template<class T> using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;
template<class T, class ENABLE = void> struct is_dynamic_modint : public std::false_type {};
template<int id> struct is_dynamic_modint<modint<id>, std::enable_if_t<(id <= 0)>> : public std::true_type {};
template<class T> using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;
} // namespace internal
} // namespace felix
#line 6 "library/convolution/subset-convolution.hpp"
namespace felix {
template<class T, class F>
void fwht(std::vector<T>& a, F f) {
const int n = (int) a.size();
assert(__builtin_popcount(n) == 1);
for(int i = 1; i < n; i <<= 1) {
for(int j = 0; j < n; j += i << 1) {
for(int k = 0; k < i; k++) {
f(a[j + k], a[i + j + k]);
}
}
}
}
template<class T>
void or_transform(std::vector<T>& a, bool inv) {
fwht(a, [&](T& x, T& y) { y += x * (inv ? -1 : +1); });
}
template<class T>
void and_transform(std::vector<T>& a, bool inv) {
fwht(a, [&](T& x, T& y) { x += y * (inv ? -1 : +1); });
}
template<class T>
void xor_transform(std::vector<T>& a, bool inv) {
fwht(a, [](T& x, T& y) {
T z = x + y;
y = x - y;
x = z;
});
if(inv) {
if constexpr(internal::is_integral<T>::value) {
for(auto& x : a) {
x /= a.size();
}
} else {
T z = T(1) / T(a.size());
for(auto& x : a) {
x *= z;
}
}
}
}
template<class T>
std::vector<T> or_convolution(std::vector<T> a, std::vector<T> b) {
assert(a.size() == b.size());
or_transform(a, false);
or_transform(b, false);
for(int i = 0; i < (int) a.size(); i++) {
a[i] *= b[i];
}
or_transform(a, true);
return a;
}
template<class T>
std::vector<T> and_convolution(std::vector<T> a, std::vector<T> b) {
assert(a.size() == b.size());
and_transform(a, false);
and_transform(b, false);
for(int i = 0; i < (int) a.size(); i++) {
a[i] *= b[i];
}
and_transform(a, true);
return a;
}
template<class T>
std::vector<T> xor_convolution(std::vector<T> a, std::vector<T> b) {
assert(a.size() == b.size());
xor_transform(a, false);
xor_transform(b, false);
for (int i = 0; i < (int) a.size(); i++) {
a[i] *= b[i];
}
xor_transform(a, true);
return a;
}
template<class T>
std::vector<T> subset_convolution(const std::vector<T>& f, const std::vector<T>& g) {
assert(f.size() == g.size());
const int n = (int) f.size();
assert(__builtin_popcount(n) == 1);
const int lg = std::__lg(n);
std::vector<std::vector<T>> fhat(lg + 1, std::vector<T>(n)), ghat(fhat), h(fhat);
for(int mask = 0; mask < n; mask++) {
fhat[__builtin_popcount(mask)][mask] = f[mask];
ghat[__builtin_popcount(mask)][mask] = g[mask];
}
for(int i = 0; i <= lg; ++i) {
or_transform(fhat[i], false);
or_transform(ghat[i], false);
}
for(int mask = 0; mask < n; mask++) {
for(int i = 0; i <= lg; ++i) {
for(int j = 0; j <= i; ++j) {
h[i][mask] += fhat[j][mask] * ghat[i - j][mask];
}
}
}
for(int i = 0; i <= lg; ++i) {
or_transform(h[i], true);
}
std::vector<T> result(n);
for(int mask = 0; mask < n; mask++) {
result[mask] = h[__builtin_popcount(mask)][mask];
}
return result;
}
} // namespace felix
#line 7 "test/convolution/subset-convolution/yosupo-Subset-Convolution.test.cpp"
using namespace std;
using namespace felix;
using mint = modint998244353;
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
int n;
cin >> n;
n = 1 << n;
vector<mint> a(n);
for(int i = 0; i < n; i++) {
cin >> a[i];
}
vector<mint> b(n);
for(int i = 0; i < n; i++) {
cin >> b[i];
}
auto c = subset_convolution(a, b);
for(int i = 0; i < n; i++) {
cout << c[i] << " \n"[i == n - 1];
}
return 0;
}