This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub fffelix-huang/CP-stuff
#define PROBLEM "https://judge.yosupo.jp/problem/dynamic_tree_vertex_set_path_composite" #include <iostream> #include <vector> #include "../../../library/modint/modint.hpp" #include "../../../library/data-structure/lazy-lct.hpp" using namespace std; using namespace felix; using mint = modint998244353; struct S { pair<mint, mint> f, g; S() : S(1, 0) {} S(mint a, mint b) : f(a, b), g(a, b) {} S(pair<mint, mint> a, pair<mint, mint> b) : f(a), g(b) {} }; pair<mint, mint> combine(pair<mint, mint> f, pair<mint, mint> g) { return make_pair(f.first * g.first, f.first * g.second + f.second); } S e() { return S(); } S op(S a, S b) { return S(combine(a.f, b.f), combine(b.g, a.g)); } S reversal(S s) { return S(s.g, s.f); } using F = bool; F id() { return false; } S mapping(F f, S s) { return s; } F composition(F a, F b) { return false; } int main() { ios::sync_with_stdio(false); cin.tie(0); int n, q; cin >> n >> q; vector<S> a(n); for(int i = 0; i < n; i++) { mint x, y; cin >> x >> y; a[i] = S(x, y); } lazy_lct<S, e, op, reversal, F, id, mapping, composition> lct(a); for(int i = 0; i < n - 1; i++) { int u, v; cin >> u >> v; lct.link(u, v); } while(q--) { int type, x, y; cin >> type >> x >> y; if(type == 0) { int u, v; cin >> u >> v; lct.cut(x, y); lct.link(u, v); } else if(type == 1) { int z; cin >> z; lct.set(x, S(y, z)); } else { int z; cin >> z; auto res = lct.prod(x, y).g; cout << res.first * z + res.second << "\n"; } } return 0; }
#line 1 "test/data-structure/lazy-lct/yosupo-Dynamic-Tree-Vertex-Set-Path-Composite.test.cpp" #define PROBLEM "https://judge.yosupo.jp/problem/dynamic_tree_vertex_set_path_composite" #include <iostream> #include <vector> #line 4 "library/modint/modint.hpp" #include <algorithm> #include <cassert> #include <type_traits> #line 3 "library/misc/type-traits.hpp" #include <numeric> #line 5 "library/misc/type-traits.hpp" namespace felix { namespace internal { #ifndef _MSC_VER template<class T> using is_signed_int128 = typename std::conditional<std::is_same<T, __int128_t>::value || std::is_same<T, __int128>::value, std::true_type, std::false_type>::type; template<class T> using is_unsigned_int128 = typename std::conditional<std::is_same<T, __uint128_t>::value || std::is_same<T, unsigned __int128>::value, std::true_type, std::false_type>::type; template<class T> using make_unsigned_int128 = typename std::conditional<std::is_same<T, __int128_t>::value, __uint128_t, unsigned __int128>; template<class T> using is_integral = typename std::conditional<std::is_integral<T>::value || is_signed_int128<T>::value || is_unsigned_int128<T>::value, std::true_type, std::false_type>::type; template<class T> using is_signed_int = typename std::conditional<(is_integral<T>::value && std::is_signed<T>::value) || is_signed_int128<T>::value, std::true_type, std::false_type>::type; template<class T> using is_unsigned_int = typename std::conditional<(is_integral<T>::value && std::is_unsigned<T>::value) || is_unsigned_int128<T>::value, std::true_type, std::false_type>::type; template<class T> using to_unsigned = typename std::conditional<is_signed_int128<T>::value, make_unsigned_int128<T>, typename std::conditional<std::is_signed<T>::value, std::make_unsigned<T>, std::common_type<T>>::type>::type; #else template<class T> using is_integral = typename std::is_integral<T>; template<class T> using is_signed_int = typename std::conditional<is_integral<T>::value && std::is_signed<T>::value, std::true_type, std::false_type>::type; template<class T> using is_unsigned_int = typename std::conditional<is_integral<T>::value && std::is_unsigned<T>::value, std::true_type, std::false_type>::type; template<class T> using to_unsigned = typename std::conditional<is_signed_int<T>::value, std::make_unsigned<T>, std::common_type<T>>::type; #endif template<class T> using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>; template<class T> using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>; template<class T> using to_unsigned_t = typename to_unsigned<T>::type; template<class T> struct safely_multipliable {}; template<> struct safely_multipliable<short> { using type = int; }; template<> struct safely_multipliable<unsigned short> { using type = unsigned int; }; template<> struct safely_multipliable<int> { using type = long long; }; template<> struct safely_multipliable<unsigned int> { using type = unsigned long long; }; template<> struct safely_multipliable<long long> { using type = __int128; }; template<> struct safely_multipliable<unsigned long long> { using type = __uint128_t; }; template<class T> using safely_multipliable_t = typename safely_multipliable<T>::type; } // namespace internal } // namespace felix #line 2 "library/math/safe-mod.hpp" namespace felix { namespace internal { template<class T> constexpr T safe_mod(T x, T m) { x %= m; if(x < 0) { x += m; } return x; } } // namespace internal } // namespace felix #line 3 "library/math/inv-gcd.hpp" namespace felix { namespace internal { template<class T> constexpr std::pair<T, T> inv_gcd(T a, T b) { a = safe_mod(a, b); if(a == 0) { return {b, 0}; } T s = b, t = a; T m0 = 0, m1 = 1; while(t) { T u = s / t; s -= t * u; m0 -= m1 * u; auto tmp = s; s = t; t = tmp; tmp = m0; m0 = m1; m1 = tmp; } if(m0 < 0) { m0 += b / s; } return {s, m0}; } } // namespace internal } // namespace felix #line 9 "library/modint/modint.hpp" namespace felix { template<int id> struct modint { public: static constexpr int mod() { return (id > 0 ? id : md); } static constexpr void set_mod(int m) { if(id > 0 || md == m) { return; } md = m; fact.resize(1); inv_fact.resize(1); invs.resize(1); } static constexpr void prepare(int n) { int sz = (int) fact.size(); if(sz == mod()) { return; } n = 1 << std::__lg(2 * n - 1); if(n < sz) { return; } if(n < (sz - 1) * 2) { n = std::min((sz - 1) * 2, mod() - 1); } fact.resize(n + 1); inv_fact.resize(n + 1); invs.resize(n + 1); for(int i = sz; i <= n; i++) { fact[i] = fact[i - 1] * i; } auto eg = internal::inv_gcd(fact.back().val(), mod()); assert(eg.first == 1); inv_fact[n] = eg.second; for(int i = n - 1; i >= sz; i--) { inv_fact[i] = inv_fact[i + 1] * (i + 1); } for(int i = n; i >= sz; i--) { invs[i] = inv_fact[i] * fact[i - 1]; } } constexpr modint() : v(0) {} template<class T, internal::is_signed_int_t<T>* = nullptr> constexpr modint(T x) : v(x >= 0 ? x % mod() : x % mod() + mod()) {} template<class T, internal::is_unsigned_int_t<T>* = nullptr> constexpr modint(T x) : v(x % mod()) {} constexpr int val() const { return v; } constexpr modint inv() const { if(id > 0 && v < std::min(mod() >> 1, 1 << 18)) { prepare(v); return invs[v]; } else { auto eg = internal::inv_gcd(v, mod()); assert(eg.first == 1); return eg.second; } } constexpr modint& operator+=(const modint& rhs) & { v += rhs.v; if(v >= mod()) { v -= mod(); } return *this; } constexpr modint& operator-=(const modint& rhs) & { v -= rhs.v; if(v < 0) { v += mod(); } return *this; } constexpr modint& operator*=(const modint& rhs) & { v = 1LL * v * rhs.v % mod(); return *this; } constexpr modint& operator/=(const modint& rhs) & { return *this *= rhs.inv(); } friend constexpr modint operator+(modint lhs, modint rhs) { return lhs += rhs; } friend constexpr modint operator-(modint lhs, modint rhs) { return lhs -= rhs; } friend constexpr modint operator*(modint lhs, modint rhs) { return lhs *= rhs; } friend constexpr modint operator/(modint lhs, modint rhs) { return lhs /= rhs; } constexpr modint operator+() const { return *this; } constexpr modint operator-() const { return modint() - *this; } constexpr bool operator==(const modint& rhs) const { return v == rhs.v; } constexpr bool operator!=(const modint& rhs) const { return v != rhs.v; } constexpr modint pow(long long p) const { modint a(*this), res(1); if(p < 0) { a = a.inv(); p = -p; } while(p) { if(p & 1) { res *= a; } a *= a; p >>= 1; } return res; } constexpr bool has_sqrt() const { if(mod() == 2 || v == 0) { return true; } if(pow((mod() - 1) / 2).val() != 1) { return false; } return true; } constexpr modint sqrt() const { if(mod() == 2 || v < 2) { return *this; } assert(pow((mod() - 1) / 2).val() == 1); modint b = 1; while(b.pow((mod() - 1) >> 1).val() == 1) { b += 1; } int m = mod() - 1, e = __builtin_ctz(m); m >>= e; modint x = modint(*this).pow((m - 1) >> 1); modint y = modint(*this) * x * x; x *= v; modint z = b.pow(m); while(y.val() != 1) { int j = 0; modint t = y; while(t.val() != 1) { t *= t; j++; } z = z.pow(1LL << (e - j - 1)); x *= z, z *= z, y *= z; e = j; } return x; } friend std::istream& operator>>(std::istream& in, modint& num) { long long x; in >> x; num = modint<id>(x); return in; } friend std::ostream& operator<<(std::ostream& out, const modint& num) { return out << num.val(); } public: static std::vector<modint> fact, inv_fact, invs; private: int v; static int md; }; template<int id> int modint<id>::md = 998244353; template<int id> std::vector<modint<id>> modint<id>::fact = {1}; template<int id> std::vector<modint<id>> modint<id>::inv_fact = {1}; template<int id> std::vector<modint<id>> modint<id>::invs = {0}; using modint998244353 = modint<998244353>; using modint1000000007 = modint<1000000007>; namespace internal { template<class T> struct is_modint : public std::false_type {}; template<int id> struct is_modint<modint<id>> : public std::true_type {}; template<class T, class ENABLE = void> struct is_static_modint : public std::false_type {}; template<int id> struct is_static_modint<modint<id>, std::enable_if_t<(id > 0)>> : public std::true_type {}; template<class T> using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>; template<class T, class ENABLE = void> struct is_dynamic_modint : public std::false_type {}; template<int id> struct is_dynamic_modint<modint<id>, std::enable_if_t<(id <= 0)>> : public std::true_type {}; template<class T> using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>; } // namespace internal } // namespace felix #line 5 "library/data-structure/lazy-lct.hpp" namespace felix { template<class S, S (*e)(), S (*op)(S, S), S (*reversal)(S), class F, F (*id)(), S (*mapping)(F, S), F (*composition)(F, F)> struct lazy_lct { public: struct node_t { S val = e(), sum = e(); F lz = id(); bool rev = false; int sz = 1; node_t* l = nullptr; node_t* r = nullptr; node_t* p = nullptr; node_t() {} node_t(const S& s) : val(s), sum(s) {} bool is_root() const { return p == nullptr || (p->l != this && p->r != this); } }; lazy_lct() : n(0) {} explicit lazy_lct(int _n) : lazy_lct(std::vector<S>(_n, e())) {} explicit lazy_lct(const std::vector<S>& v) : n(v.size()) { a.reserve(n); for(int i = 0; i < n; i++) { a.emplace_back(v[i]); } } node_t* access(int u) { assert(0 <= u && u < n); node_t* v = &a[u]; node_t* last = nullptr; for(node_t* p = v; p != nullptr; p = p->p) { splay(p); p->r = last; pull(p); last = p; } splay(v); return last; } void make_root(int u) { access(u); a[u].rev ^= 1; push(&a[u]); } void link(int u, int v) { make_root(v); a[v].p = &a[u]; } void cut(int u) { access(u); if(a[u].l != nullptr) { a[u].l->p = nullptr; a[u].l = nullptr; pull(&a[u]); } } void cut(int u, int v) { make_root(u); cut(v); } bool is_connected(int u, int v) { if(u == v) { return true; } access(u), access(v); return a[u].p != nullptr; } int get_lca(int u, int v) { if(u == v) { return u; } access(u); return access(v) - &a[0]; } int get_root(int u) { node_t* v = access(u); push(v); while(v->l != nullptr) { v = v->l; push(v); } access(v); return v - &a[0]; } void set(int u, const S& s) { access(u); a[u].val = s; pull(&a[u]); } S get(int u) { access(u); return a[u].val; } void apply(int u, int v, const F& f) { make_root(u); access(v); all_apply(&a[v], f); push(&a[v]); } S prod(int u, int v) { make_root(u); access(v); return a[v].sum; } private: int n; std::vector<node_t> a; void rotate(node_t* v) { auto attach = [&](node_t* p, bool side, node_t* c) { (side ? p->r : p->l) = c; pull(p); if(c != nullptr) { c->p = p; } }; node_t* p = v->p; node_t* g = p->p; bool is_right = (p->r == v); bool is_root = p->is_root(); attach(p, is_right, (is_right ? v->l : v->r)); attach(v, !is_right, p); if(!is_root) { attach(g, (g->r == p), v); } else { v->p = g; } } void splay(node_t* v) { push(v); while(!v->is_root()) { auto p = v->p; auto g = p->p; if(!p->is_root()) { push(g); } push(p), push(v); if(!p->is_root()) { rotate((g->r == p) == (p->r == v) ? p : v); } rotate(v); } } void all_apply(node_t* v, F f) { v->val = mapping(f, v->val); v->sum = mapping(f, v->sum); v->lz = composition(f, v->lz); } void push(node_t* v) { if(v->lz != id()) { if(v->l != nullptr) { all_apply(v->l, v->lz); } if(v->r != nullptr) { all_apply(v->r, v->lz); } v->lz = id(); } if(v->rev) { std::swap(v->l, v->r); if(v->l != nullptr) { v->l->rev ^= 1; } if(v->r != nullptr) { v->r->rev ^= 1; } v->sum = reversal(v->sum); v->rev = false; } } void pull(node_t* v) { v->sz = 1; v->sum = v->val; if(v->l != nullptr) { push(v->l); v->sum = op(v->l->sum, v->sum); v->sz += v->l->sz; } if(v->r != nullptr) { push(v->r); v->sum = op(v->sum, v->r->sum); v->sz += v->r->sz; } } }; } // namespace felix #line 7 "test/data-structure/lazy-lct/yosupo-Dynamic-Tree-Vertex-Set-Path-Composite.test.cpp" using namespace std; using namespace felix; using mint = modint998244353; struct S { pair<mint, mint> f, g; S() : S(1, 0) {} S(mint a, mint b) : f(a, b), g(a, b) {} S(pair<mint, mint> a, pair<mint, mint> b) : f(a), g(b) {} }; pair<mint, mint> combine(pair<mint, mint> f, pair<mint, mint> g) { return make_pair(f.first * g.first, f.first * g.second + f.second); } S e() { return S(); } S op(S a, S b) { return S(combine(a.f, b.f), combine(b.g, a.g)); } S reversal(S s) { return S(s.g, s.f); } using F = bool; F id() { return false; } S mapping(F f, S s) { return s; } F composition(F a, F b) { return false; } int main() { ios::sync_with_stdio(false); cin.tie(0); int n, q; cin >> n >> q; vector<S> a(n); for(int i = 0; i < n; i++) { mint x, y; cin >> x >> y; a[i] = S(x, y); } lazy_lct<S, e, op, reversal, F, id, mapping, composition> lct(a); for(int i = 0; i < n - 1; i++) { int u, v; cin >> u >> v; lct.link(u, v); } while(q--) { int type, x, y; cin >> type >> x >> y; if(type == 0) { int u, v; cin >> u >> v; lct.cut(x, y); lct.link(u, v); } else if(type == 1) { int z; cin >> z; lct.set(x, S(y, z)); } else { int z; cin >> z; auto res = lct.prod(x, y).g; cout << res.first * z + res.second << "\n"; } } return 0; }