This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "https://judge.yosupo.jp/problem/dynamic_tree_vertex_set_path_composite"
#include <iostream>
#include <vector>
#include "../../../library/modint/modint.hpp"
#include "../../../library/data-structure/lazy-lct.hpp"
using namespace std;
using namespace felix;
using mint = modint998244353;
struct S {
pair<mint, mint> f, g;
S() : S(1, 0) {}
S(mint a, mint b) : f(a, b), g(a, b) {}
S(pair<mint, mint> a, pair<mint, mint> b) : f(a), g(b) {}
};
pair<mint, mint> combine(pair<mint, mint> f, pair<mint, mint> g) { return make_pair(f.first * g.first, f.first * g.second + f.second); }
S e() { return S(); }
S op(S a, S b) { return S(combine(a.f, b.f), combine(b.g, a.g)); }
S reversal(S s) { return S(s.g, s.f); }
using F = bool;
F id() { return false; }
S mapping(F f, S s) { return s; }
F composition(F a, F b) { return false; }
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
int n, q;
cin >> n >> q;
vector<S> a(n);
for(int i = 0; i < n; i++) {
mint x, y;
cin >> x >> y;
a[i] = S(x, y);
}
lazy_lct<S, e, op, reversal, F, id, mapping, composition> lct(a);
for(int i = 0; i < n - 1; i++) {
int u, v;
cin >> u >> v;
lct.link(u, v);
}
while(q--) {
int type, x, y;
cin >> type >> x >> y;
if(type == 0) {
int u, v;
cin >> u >> v;
lct.cut(x, y);
lct.link(u, v);
} else if(type == 1) {
int z;
cin >> z;
lct.set(x, S(y, z));
} else {
int z;
cin >> z;
auto res = lct.prod(x, y).g;
cout << res.first * z + res.second << "\n";
}
}
return 0;
}
#line 1 "test/data-structure/lazy-lct/yosupo-Dynamic-Tree-Vertex-Set-Path-Composite.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/dynamic_tree_vertex_set_path_composite"
#include <iostream>
#include <vector>
#line 4 "library/modint/modint.hpp"
#include <algorithm>
#include <cassert>
#include <type_traits>
#line 3 "library/misc/type-traits.hpp"
#include <numeric>
#line 5 "library/misc/type-traits.hpp"
namespace felix {
namespace internal {
#ifndef _MSC_VER
template<class T> using is_signed_int128 = typename std::conditional<std::is_same<T, __int128_t>::value || std::is_same<T, __int128>::value, std::true_type, std::false_type>::type;
template<class T> using is_unsigned_int128 = typename std::conditional<std::is_same<T, __uint128_t>::value || std::is_same<T, unsigned __int128>::value, std::true_type, std::false_type>::type;
template<class T> using make_unsigned_int128 = typename std::conditional<std::is_same<T, __int128_t>::value, __uint128_t, unsigned __int128>;
template<class T> using is_integral = typename std::conditional<std::is_integral<T>::value || is_signed_int128<T>::value || is_unsigned_int128<T>::value, std::true_type, std::false_type>::type;
template<class T> using is_signed_int = typename std::conditional<(is_integral<T>::value && std::is_signed<T>::value) || is_signed_int128<T>::value, std::true_type, std::false_type>::type;
template<class T> using is_unsigned_int = typename std::conditional<(is_integral<T>::value && std::is_unsigned<T>::value) || is_unsigned_int128<T>::value, std::true_type, std::false_type>::type;
template<class T> using to_unsigned = typename std::conditional<is_signed_int128<T>::value, make_unsigned_int128<T>, typename std::conditional<std::is_signed<T>::value, std::make_unsigned<T>, std::common_type<T>>::type>::type;
#else
template<class T> using is_integral = typename std::is_integral<T>;
template<class T> using is_signed_int = typename std::conditional<is_integral<T>::value && std::is_signed<T>::value, std::true_type, std::false_type>::type;
template<class T> using is_unsigned_int = typename std::conditional<is_integral<T>::value && std::is_unsigned<T>::value, std::true_type, std::false_type>::type;
template<class T> using to_unsigned = typename std::conditional<is_signed_int<T>::value, std::make_unsigned<T>, std::common_type<T>>::type;
#endif
template<class T> using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;
template<class T> using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;
template<class T> using to_unsigned_t = typename to_unsigned<T>::type;
template<class T> struct safely_multipliable {};
template<> struct safely_multipliable<short> { using type = int; };
template<> struct safely_multipliable<unsigned short> { using type = unsigned int; };
template<> struct safely_multipliable<int> { using type = long long; };
template<> struct safely_multipliable<unsigned int> { using type = unsigned long long; };
template<> struct safely_multipliable<long long> { using type = __int128; };
template<> struct safely_multipliable<unsigned long long> { using type = __uint128_t; };
template<class T> using safely_multipliable_t = typename safely_multipliable<T>::type;
} // namespace internal
} // namespace felix
#line 2 "library/math/safe-mod.hpp"
namespace felix {
namespace internal {
template<class T>
constexpr T safe_mod(T x, T m) {
x %= m;
if(x < 0) {
x += m;
}
return x;
}
} // namespace internal
} // namespace felix
#line 3 "library/math/inv-gcd.hpp"
namespace felix {
namespace internal {
template<class T>
constexpr std::pair<T, T> inv_gcd(T a, T b) {
a = safe_mod(a, b);
if(a == 0) {
return {b, 0};
}
T s = b, t = a;
T m0 = 0, m1 = 1;
while(t) {
T u = s / t;
s -= t * u;
m0 -= m1 * u;
auto tmp = s;
s = t;
t = tmp;
tmp = m0;
m0 = m1;
m1 = tmp;
}
if(m0 < 0) {
m0 += b / s;
}
return {s, m0};
}
} // namespace internal
} // namespace felix
#line 9 "library/modint/modint.hpp"
namespace felix {
template<int id>
struct modint {
public:
static constexpr int mod() { return (id > 0 ? id : md); }
static constexpr void set_mod(int m) {
if(id > 0 || md == m) {
return;
}
md = m;
fact.resize(1);
inv_fact.resize(1);
invs.resize(1);
}
static constexpr void prepare(int n) {
int sz = (int) fact.size();
if(sz == mod()) {
return;
}
n = 1 << std::__lg(2 * n - 1);
if(n < sz) {
return;
}
if(n < (sz - 1) * 2) {
n = std::min((sz - 1) * 2, mod() - 1);
}
fact.resize(n + 1);
inv_fact.resize(n + 1);
invs.resize(n + 1);
for(int i = sz; i <= n; i++) {
fact[i] = fact[i - 1] * i;
}
auto eg = internal::inv_gcd(fact.back().val(), mod());
assert(eg.first == 1);
inv_fact[n] = eg.second;
for(int i = n - 1; i >= sz; i--) {
inv_fact[i] = inv_fact[i + 1] * (i + 1);
}
for(int i = n; i >= sz; i--) {
invs[i] = inv_fact[i] * fact[i - 1];
}
}
constexpr modint() : v(0) {}
template<class T, internal::is_signed_int_t<T>* = nullptr> constexpr modint(T x) : v(x >= 0 ? x % mod() : x % mod() + mod()) {}
template<class T, internal::is_unsigned_int_t<T>* = nullptr> constexpr modint(T x) : v(x % mod()) {}
constexpr int val() const { return v; }
constexpr modint inv() const {
if(id > 0 && v < std::min(mod() >> 1, 1 << 18)) {
prepare(v);
return invs[v];
} else {
auto eg = internal::inv_gcd(v, mod());
assert(eg.first == 1);
return eg.second;
}
}
constexpr modint& operator+=(const modint& rhs) & {
v += rhs.v;
if(v >= mod()) {
v -= mod();
}
return *this;
}
constexpr modint& operator-=(const modint& rhs) & {
v -= rhs.v;
if(v < 0) {
v += mod();
}
return *this;
}
constexpr modint& operator*=(const modint& rhs) & {
v = 1LL * v * rhs.v % mod();
return *this;
}
constexpr modint& operator/=(const modint& rhs) & {
return *this *= rhs.inv();
}
friend constexpr modint operator+(modint lhs, modint rhs) { return lhs += rhs; }
friend constexpr modint operator-(modint lhs, modint rhs) { return lhs -= rhs; }
friend constexpr modint operator*(modint lhs, modint rhs) { return lhs *= rhs; }
friend constexpr modint operator/(modint lhs, modint rhs) { return lhs /= rhs; }
constexpr modint operator+() const { return *this; }
constexpr modint operator-() const { return modint() - *this; }
constexpr bool operator==(const modint& rhs) const { return v == rhs.v; }
constexpr bool operator!=(const modint& rhs) const { return v != rhs.v; }
constexpr modint pow(long long p) const {
modint a(*this), res(1);
if(p < 0) {
a = a.inv();
p = -p;
}
while(p) {
if(p & 1) {
res *= a;
}
a *= a;
p >>= 1;
}
return res;
}
constexpr bool has_sqrt() const {
if(mod() == 2 || v == 0) {
return true;
}
if(pow((mod() - 1) / 2).val() != 1) {
return false;
}
return true;
}
constexpr modint sqrt() const {
if(mod() == 2 || v < 2) {
return *this;
}
assert(pow((mod() - 1) / 2).val() == 1);
modint b = 1;
while(b.pow((mod() - 1) >> 1).val() == 1) {
b += 1;
}
int m = mod() - 1, e = __builtin_ctz(m);
m >>= e;
modint x = modint(*this).pow((m - 1) >> 1);
modint y = modint(*this) * x * x;
x *= v;
modint z = b.pow(m);
while(y.val() != 1) {
int j = 0;
modint t = y;
while(t.val() != 1) {
t *= t;
j++;
}
z = z.pow(1LL << (e - j - 1));
x *= z, z *= z, y *= z;
e = j;
}
return x;
}
friend std::istream& operator>>(std::istream& in, modint& num) {
long long x;
in >> x;
num = modint<id>(x);
return in;
}
friend std::ostream& operator<<(std::ostream& out, const modint& num) {
return out << num.val();
}
public:
static std::vector<modint> fact, inv_fact, invs;
private:
int v;
static int md;
};
template<int id> int modint<id>::md = 998244353;
template<int id> std::vector<modint<id>> modint<id>::fact = {1};
template<int id> std::vector<modint<id>> modint<id>::inv_fact = {1};
template<int id> std::vector<modint<id>> modint<id>::invs = {0};
using modint998244353 = modint<998244353>;
using modint1000000007 = modint<1000000007>;
namespace internal {
template<class T> struct is_modint : public std::false_type {};
template<int id> struct is_modint<modint<id>> : public std::true_type {};
template<class T, class ENABLE = void> struct is_static_modint : public std::false_type {};
template<int id> struct is_static_modint<modint<id>, std::enable_if_t<(id > 0)>> : public std::true_type {};
template<class T> using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;
template<class T, class ENABLE = void> struct is_dynamic_modint : public std::false_type {};
template<int id> struct is_dynamic_modint<modint<id>, std::enable_if_t<(id <= 0)>> : public std::true_type {};
template<class T> using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;
} // namespace internal
} // namespace felix
#line 5 "library/data-structure/lazy-lct.hpp"
namespace felix {
template<class S,
S (*e)(),
S (*op)(S, S),
S (*reversal)(S),
class F,
F (*id)(),
S (*mapping)(F, S),
F (*composition)(F, F)>
struct lazy_lct {
public:
struct node_t {
S val = e(), sum = e();
F lz = id();
bool rev = false;
int sz = 1;
node_t* l = nullptr;
node_t* r = nullptr;
node_t* p = nullptr;
node_t() {}
node_t(const S& s) : val(s), sum(s) {}
bool is_root() const { return p == nullptr || (p->l != this && p->r != this); }
};
lazy_lct() : n(0) {}
explicit lazy_lct(int _n) : lazy_lct(std::vector<S>(_n, e())) {}
explicit lazy_lct(const std::vector<S>& v) : n(v.size()) {
a.reserve(n);
for(int i = 0; i < n; i++) {
a.emplace_back(v[i]);
}
}
node_t* access(int u) {
assert(0 <= u && u < n);
node_t* v = &a[u];
node_t* last = nullptr;
for(node_t* p = v; p != nullptr; p = p->p) {
splay(p);
p->r = last;
pull(p);
last = p;
}
splay(v);
return last;
}
void make_root(int u) {
access(u);
a[u].rev ^= 1;
push(&a[u]);
}
void link(int u, int v) {
make_root(v);
a[v].p = &a[u];
}
void cut(int u) {
access(u);
if(a[u].l != nullptr) {
a[u].l->p = nullptr;
a[u].l = nullptr;
pull(&a[u]);
}
}
void cut(int u, int v) {
make_root(u);
cut(v);
}
bool is_connected(int u, int v) {
if(u == v) {
return true;
}
access(u), access(v);
return a[u].p != nullptr;
}
int get_lca(int u, int v) {
if(u == v) {
return u;
}
access(u);
return access(v) - &a[0];
}
int get_root(int u) {
node_t* v = access(u);
push(v);
while(v->l != nullptr) {
v = v->l;
push(v);
}
access(v);
return v - &a[0];
}
void set(int u, const S& s) {
access(u);
a[u].val = s;
pull(&a[u]);
}
S get(int u) {
access(u);
return a[u].val;
}
void apply(int u, int v, const F& f) {
make_root(u);
access(v);
all_apply(&a[v], f);
push(&a[v]);
}
S prod(int u, int v) {
make_root(u);
access(v);
return a[v].sum;
}
private:
int n;
std::vector<node_t> a;
void rotate(node_t* v) {
auto attach = [&](node_t* p, bool side, node_t* c) {
(side ? p->r : p->l) = c;
pull(p);
if(c != nullptr) {
c->p = p;
}
};
node_t* p = v->p;
node_t* g = p->p;
bool is_right = (p->r == v);
bool is_root = p->is_root();
attach(p, is_right, (is_right ? v->l : v->r));
attach(v, !is_right, p);
if(!is_root) {
attach(g, (g->r == p), v);
} else {
v->p = g;
}
}
void splay(node_t* v) {
push(v);
while(!v->is_root()) {
auto p = v->p;
auto g = p->p;
if(!p->is_root()) {
push(g);
}
push(p), push(v);
if(!p->is_root()) {
rotate((g->r == p) == (p->r == v) ? p : v);
}
rotate(v);
}
}
void all_apply(node_t* v, F f) {
v->val = mapping(f, v->val);
v->sum = mapping(f, v->sum);
v->lz = composition(f, v->lz);
}
void push(node_t* v) {
if(v->lz != id()) {
if(v->l != nullptr) {
all_apply(v->l, v->lz);
}
if(v->r != nullptr) {
all_apply(v->r, v->lz);
}
v->lz = id();
}
if(v->rev) {
std::swap(v->l, v->r);
if(v->l != nullptr) {
v->l->rev ^= 1;
}
if(v->r != nullptr) {
v->r->rev ^= 1;
}
v->sum = reversal(v->sum);
v->rev = false;
}
}
void pull(node_t* v) {
v->sz = 1;
v->sum = v->val;
if(v->l != nullptr) {
push(v->l);
v->sum = op(v->l->sum, v->sum);
v->sz += v->l->sz;
}
if(v->r != nullptr) {
push(v->r);
v->sum = op(v->sum, v->r->sum);
v->sz += v->r->sz;
}
}
};
} // namespace felix
#line 7 "test/data-structure/lazy-lct/yosupo-Dynamic-Tree-Vertex-Set-Path-Composite.test.cpp"
using namespace std;
using namespace felix;
using mint = modint998244353;
struct S {
pair<mint, mint> f, g;
S() : S(1, 0) {}
S(mint a, mint b) : f(a, b), g(a, b) {}
S(pair<mint, mint> a, pair<mint, mint> b) : f(a), g(b) {}
};
pair<mint, mint> combine(pair<mint, mint> f, pair<mint, mint> g) { return make_pair(f.first * g.first, f.first * g.second + f.second); }
S e() { return S(); }
S op(S a, S b) { return S(combine(a.f, b.f), combine(b.g, a.g)); }
S reversal(S s) { return S(s.g, s.f); }
using F = bool;
F id() { return false; }
S mapping(F f, S s) { return s; }
F composition(F a, F b) { return false; }
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
int n, q;
cin >> n >> q;
vector<S> a(n);
for(int i = 0; i < n; i++) {
mint x, y;
cin >> x >> y;
a[i] = S(x, y);
}
lazy_lct<S, e, op, reversal, F, id, mapping, composition> lct(a);
for(int i = 0; i < n - 1; i++) {
int u, v;
cin >> u >> v;
lct.link(u, v);
}
while(q--) {
int type, x, y;
cin >> type >> x >> y;
if(type == 0) {
int u, v;
cin >> u >> v;
lct.cut(x, y);
lct.link(u, v);
} else if(type == 1) {
int z;
cin >> z;
lct.set(x, S(y, z));
} else {
int z;
cin >> z;
auto res = lct.prod(x, y).g;
cout << res.first * z + res.second << "\n";
}
}
return 0;
}