This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "https://judge.yosupo.jp/problem/predecessor_problem"
#include <iostream>
#include "../../../library/data-structure/ordered-set.hpp"
using namespace std;
using namespace felix;
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
int n, q;
cin >> n >> q;
ordered_set<int> tree;
string s;
cin >> s;
for(int i = 0; i < n; i++) {
if(s[i] == '1') {
tree.insert(i);
}
}
while(q--) {
int type, x;
cin >> type >> x;
if(type == 0) {
tree.insert(x);
} else if(type == 1) {
tree.erase(x);
} else if(type == 2) {
cout << tree.count(x) << "\n";
} else if(type == 3) {
int index = tree.lower_bound(x);
int ans = -1;
if(index < tree.size()) {
ans = tree.get(index);
}
cout << ans << "\n";
} else {
int index = tree.upper_bound(x) - 1;
int ans = -1;
if(index >= 0) {
ans = tree.get(index);
}
cout << ans << "\n";
}
}
return 0;
}
#line 1 "test/data-structure/ordered-set/yosupo-Predecessor-Problem.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/predecessor_problem"
#include <iostream>
#line 2 "library/data-structure/ordered-set.hpp"
#include <tuple>
#include <cassert>
#include <iterator>
#include <functional>
#line 2 "library/random/rng.hpp"
#include <chrono>
namespace felix {
inline unsigned long long rng() {
static unsigned long long SEED = std::chrono::steady_clock::now().time_since_epoch().count();
SEED ^= SEED << 7;
SEED ^= SEED >> 9;
return SEED;
}
} // namespace felix
#line 5 "library/bst/rbst-base.hpp"
namespace felix {
namespace internal {
template<class node_t, class Comp = std::less<decltype(node_t::key)>>
struct rbst_base {
using key_type = decltype(node_t::key);
private:
static const Comp Compare;
public:
static node_t* merge(node_t* a, node_t* b) {
if(a == nullptr || b == nullptr) {
return a != nullptr ? a : b;
}
if((int) (((unsigned int) rng() * 1LL * (a->size + b->size)) >> 32) < a->size) {
a->push();
a->r = merge(a->r, b);
a->pull();
return a;
} else {
b->push();
b->l = merge(a, b->l);
b->pull();
return b;
}
}
static std::pair<node_t*, node_t*> split(node_t* v, int k) {
if(v == nullptr) {
return {nullptr, nullptr};
}
v->push();
if(k <= get_size(v->l)) {
auto p = split(v->l, k);
v->l = p.second;
if(p.first != nullptr) {
p.first->p = nullptr;
}
v->pull();
return {p.first, v};
} else {
auto p = split(v->r, k - get_size(v->l) - 1);
v->r = p.first;
if(p.second != nullptr) {
p.second->p = nullptr;
}
v->pull();
return {v, p.second};
}
}
static std::tuple<node_t*, node_t*, node_t*> split_range(node_t* v, int l, int r) {
auto p = split(v, l);
auto q = split(p.second, r - l);
return {p.first, q.first, q.second};
}
static void insert(node_t*& v, int k, const key_type& val) {
auto p = split(v, k);
v = merge(p.first, merge(new node_t(val), p.second));
}
static void erase(node_t*& v, int k) {
auto p = split_range(v, k, k + 1);
delete std::get<1>(p);
v = merge(std::get<0>(p), std::get<2>(p));
}
static int lower_bound(node_t* v, const key_type& val) {
if(v == nullptr) {
return 0;
}
// TTTTFFFF
// ^
if(Compare(v->key, val)) {
return get_size(v->l) + 1 + lower_bound(v->r, val);
} else {
return lower_bound(v->l, val);
}
}
static int upper_bound(node_t* v, const key_type& val) {
// 1 2 3 3 4
// ^
// F F F F T
if(v == nullptr) {
return 0;
}
if(!Compare(val, v->key)) {
return get_size(v->l) + 1 + upper_bound(v->r, val);
} else {
return upper_bound(v->l, val);
}
}
static key_type get(node_t*& v, int k) {
auto p = split_range(v, k, k + 1);
key_type res = std::get<1>(p)->key;
v = merge(std::get<0>(p), merge(std::get<1>(p), std::get<2>(p)));
return res;
}
static int get_index(node_t* v) {
int k = get_size(v->l);
while(v->p != nullptr) {
if(v == v->p->r) {
k++;
if(v->p->l != nullptr) {
k += v->p->l->size;
}
}
v = v->p;
}
return k;
}
static void clear(node_t*& v) {
postorder(v, [](node_t* v) {
delete v;
});
v = nullptr;
}
static node_t* next(node_t* v) {
if(v->r == nullptr) {
while(v->p != nullptr && v->p->r == v) {
v = v->p;
}
return v->p;
}
v->push();
if(v->r == nullptr) {
return nullptr;
}
v = v->r;
while(v->l != nullptr) {
v->push();
v = v->l;
}
return v;
}
static node_t* prev(node_t* v) {
if(v->l == nullptr) {
while(v->p != nullptr && v->p->l == v) {
v = v->p;
}
return v->p;
}
v->push();
if(v->l == nullptr) {
return nullptr;
}
v = v->l;
while(v->r != nullptr) {
v->push();
v = v->r;
}
return v;
}
template<class Func>
static void preorder(node_t* v, const Func& f) {
auto rec = [&](auto rec, node_t* v) -> void {
if(v == nullptr) {
return;
}
v->push();
f(v);
rec(rec, v->l);
rec(rec, v->r);
};
rec(rec, v);
}
template<class Func>
static void inorder(node_t* v, const Func& f) {
auto rec = [&](auto rec, node_t* v) -> void {
if(v == nullptr) {
return;
}
v->push();
rec(rec, v->l);
f(v);
rec(rec, v->r);
};
rec(rec, v);
}
template<class Func>
static void postorder(node_t* v, const Func& f) {
auto rec = [&](auto rec, node_t* v) -> void {
if(v == nullptr) {
return;
}
v->push();
rec(rec, v->l);
rec(rec, v->r);
f(v);
};
rec(rec, v);
}
static int size(node_t* v) { return get_size(v); }
static bool empty(node_t* v) { return v == nullptr; }
private:
static int get_size(node_t* v) { return v != nullptr ? v->size : 0; }
};
template<class node_t, class Comp> const Comp rbst_base<node_t, Comp>::Compare = Comp();
} // namespace internal
} // namespace felix
#line 7 "library/data-structure/ordered-set.hpp"
namespace felix {
namespace internal {
template<class T>
struct node_t {
T key;
int size = 1;
node_t* l = nullptr;
node_t* r = nullptr;
node_t* p = nullptr;
node_t() {}
node_t(const T& x) : key(x) {}
void push() {}
void pull() {
size = 1;
if(l != nullptr) {
size += l->size;
l->p = this;
}
if(r != nullptr) {
size += r->size;
r->p = this;
}
}
};
} // namespace internal
template<class T, class Comp = std::less<T>>
struct ordered_set {
using node_t = typename internal::node_t<T>;
using base = internal::rbst_base<node_t, Comp>;
private:
node_t* root = nullptr;
ordered_set(node_t* v) : root(v) {}
public:
ordered_set() {}
ordered_set(const ordered_set& other) {
clear();
base::preorder(other.root, [&](node_t* v) {
root = base::merge(root, new node_t(v->key));
});
}
~ordered_set() { clear(); }
int size() const { return base::size(root); }
bool empty() const { return base::empty(root); }
void clear() { base::clear(root); }
int lower_bound(const T& val) const { return base::lower_bound(root, val); }
int upper_bound(const T& val) const { return base::upper_bound(root, val); }
T get(int k) {
assert(0 <= k && k < size());
return base::get(root, k);
}
int count(const T& val) {
int k = lower_bound(val);
return k < size() && get(k) == val;
}
int insert(const T& val) {
int k = lower_bound(val);
if(k == size() || get(k) != val) {
base::insert(root, k, val);
}
return k;
}
void erase(const T& val) {
int k = lower_bound(val);
if(k < size() && get(k) == val) {
base::erase(root, k);
}
}
void merge(ordered_set& other) {
root = base::merge(root, other.root);
other.root = nullptr;
}
std::pair<ordered_set, ordered_set> split(int k) {
auto p = base::split(root, k);
root = nullptr;
return {ordered_set(p.first), ordered_set(p.second)};
}
std::tuple<ordered_set, ordered_set, ordered_set> split_range(int l, int r) {
auto p = base::split_range(root, l, r);
root = nullptr;
return {ordered_set(std::get<0>(p)), ordered_set(std::get<1>(p)), ordered_set(std::get<2>(p))};
}
};
template<class T, class Comp = std::less<T>>
struct ordered_multiset {
using node_t = typename internal::node_t<T>;
using base = internal::rbst_base<node_t, Comp>;
private:
node_t* root = nullptr;
ordered_multiset(node_t* v) : root(v) {}
public:
ordered_multiset() {}
ordered_multiset(const ordered_multiset& other) {
clear();
base::preorder(other.root, [&](node_t* v) {
root = base::merge(root, new node_t(v->key));
});
}
~ordered_multiset() { clear(); }
int size() const { return base::size(root); }
bool empty() const { return base::empty(root); }
void clear() { base::clear(root); }
int lower_bound(const T& val) const { return base::lower_bound(root, val); }
int upper_bound(const T& val) const { return base::upper_bound(root, val); }
T get(int k) {
assert(0 <= k && k < size());
return base::get(root, k);
}
int count(const T& val) const { return upper_bound(val) - lower_bound(val); }
int insert(const T& val) {
int k = lower_bound(val);
base::insert(root, k, val);
return k;
}
void erase(const T& val) {
int k = lower_bound(val);
if(k < size() && get(k) == val) {
base::erase(root, k);
}
}
void merge(ordered_multiset& other) {
root = base::merge(root, other.root);
other.root = nullptr;
}
std::pair<ordered_multiset, ordered_multiset> split(int k) {
auto p = base::split(root, k);
root = nullptr;
return {ordered_multiset(p.first), ordered_multiset(p.second)};
}
std::tuple<ordered_multiset, ordered_multiset, ordered_multiset> split_range(int l, int r) {
auto p = base::split_range(root, l, r);
root = nullptr;
return {ordered_multiset(std::get<0>(p)), ordered_multiset(std::get<1>(p)), ordered_multiset(std::get<2>(p))};
}
};
} // namespace felix
#line 5 "test/data-structure/ordered-set/yosupo-Predecessor-Problem.test.cpp"
using namespace std;
using namespace felix;
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
int n, q;
cin >> n >> q;
ordered_set<int> tree;
string s;
cin >> s;
for(int i = 0; i < n; i++) {
if(s[i] == '1') {
tree.insert(i);
}
}
while(q--) {
int type, x;
cin >> type >> x;
if(type == 0) {
tree.insert(x);
} else if(type == 1) {
tree.erase(x);
} else if(type == 2) {
cout << tree.count(x) << "\n";
} else if(type == 3) {
int index = tree.lower_bound(x);
int ans = -1;
if(index < tree.size()) {
ans = tree.get(index);
}
cout << ans << "\n";
} else {
int index = tree.upper_bound(x) - 1;
int ans = -1;
if(index >= 0) {
ans = tree.get(index);
}
cout << ans << "\n";
}
}
return 0;
}