This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "https://judge.yosupo.jp/problem/range_reverse_range_sum"
#include <iostream>
#include <vector>
#include "../../../library/data-structure/treap.hpp"
using namespace std;
using namespace felix;
using S = long long;
S e() { return 0; }
S op(S a, S b) { return a + b; }
S reversal(S a) { return a; }
using F = tuple<>;
F id() { return {}; }
S mapping(F, S s) { return s; }
F composition(F, F) { return {}; }
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
int n, q;
cin >> n >> q;
treap<S, e, op, reversal, F, id, mapping, composition> tree;
for(int i = 0; i < n; i++) {
S x;
cin >> x;
tree.insert(tree.end(), x);
}
while(q--) {
int type, l, r;
cin >> type >> l >> r;
if(type == 0) {
tree.reverse(l, r);
} else {
cout << tree.prod(l, r) << "\n";
}
}
return 0;
}
#line 1 "test/data-structure/treap/yosupo-Range-Reverse-Range-Sum.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/range_reverse_range_sum"
#include <iostream>
#include <vector>
#line 2 "library/bst/rbst-base.hpp"
#include <tuple>
#include <functional>
#line 2 "library/random/rng.hpp"
#include <chrono>
namespace felix {
inline unsigned long long rng() {
static unsigned long long SEED = std::chrono::steady_clock::now().time_since_epoch().count();
SEED ^= SEED << 7;
SEED ^= SEED >> 9;
return SEED;
}
} // namespace felix
#line 5 "library/bst/rbst-base.hpp"
namespace felix {
namespace internal {
template<class node_t, class Comp = std::less<decltype(node_t::key)>>
struct rbst_base {
using key_type = decltype(node_t::key);
private:
static const Comp Compare;
public:
static node_t* merge(node_t* a, node_t* b) {
if(a == nullptr || b == nullptr) {
return a != nullptr ? a : b;
}
if((int) (((unsigned int) rng() * 1LL * (a->size + b->size)) >> 32) < a->size) {
a->push();
a->r = merge(a->r, b);
a->pull();
return a;
} else {
b->push();
b->l = merge(a, b->l);
b->pull();
return b;
}
}
static std::pair<node_t*, node_t*> split(node_t* v, int k) {
if(v == nullptr) {
return {nullptr, nullptr};
}
v->push();
if(k <= get_size(v->l)) {
auto p = split(v->l, k);
v->l = p.second;
if(p.first != nullptr) {
p.first->p = nullptr;
}
v->pull();
return {p.first, v};
} else {
auto p = split(v->r, k - get_size(v->l) - 1);
v->r = p.first;
if(p.second != nullptr) {
p.second->p = nullptr;
}
v->pull();
return {v, p.second};
}
}
static std::tuple<node_t*, node_t*, node_t*> split_range(node_t* v, int l, int r) {
auto p = split(v, l);
auto q = split(p.second, r - l);
return {p.first, q.first, q.second};
}
static void insert(node_t*& v, int k, const key_type& val) {
auto p = split(v, k);
v = merge(p.first, merge(new node_t(val), p.second));
}
static void erase(node_t*& v, int k) {
auto p = split_range(v, k, k + 1);
delete std::get<1>(p);
v = merge(std::get<0>(p), std::get<2>(p));
}
static int lower_bound(node_t* v, const key_type& val) {
if(v == nullptr) {
return 0;
}
// TTTTFFFF
// ^
if(Compare(v->key, val)) {
return get_size(v->l) + 1 + lower_bound(v->r, val);
} else {
return lower_bound(v->l, val);
}
}
static int upper_bound(node_t* v, const key_type& val) {
// 1 2 3 3 4
// ^
// F F F F T
if(v == nullptr) {
return 0;
}
if(!Compare(val, v->key)) {
return get_size(v->l) + 1 + upper_bound(v->r, val);
} else {
return upper_bound(v->l, val);
}
}
static key_type get(node_t*& v, int k) {
auto p = split_range(v, k, k + 1);
key_type res = std::get<1>(p)->key;
v = merge(std::get<0>(p), merge(std::get<1>(p), std::get<2>(p)));
return res;
}
static int get_index(node_t* v) {
int k = get_size(v->l);
while(v->p != nullptr) {
if(v == v->p->r) {
k++;
if(v->p->l != nullptr) {
k += v->p->l->size;
}
}
v = v->p;
}
return k;
}
static void clear(node_t*& v) {
postorder(v, [](node_t* v) {
delete v;
});
v = nullptr;
}
static node_t* next(node_t* v) {
if(v->r == nullptr) {
while(v->p != nullptr && v->p->r == v) {
v = v->p;
}
return v->p;
}
v->push();
if(v->r == nullptr) {
return nullptr;
}
v = v->r;
while(v->l != nullptr) {
v->push();
v = v->l;
}
return v;
}
static node_t* prev(node_t* v) {
if(v->l == nullptr) {
while(v->p != nullptr && v->p->l == v) {
v = v->p;
}
return v->p;
}
v->push();
if(v->l == nullptr) {
return nullptr;
}
v = v->l;
while(v->r != nullptr) {
v->push();
v = v->r;
}
return v;
}
template<class Func>
static void preorder(node_t* v, const Func& f) {
auto rec = [&](auto rec, node_t* v) -> void {
if(v == nullptr) {
return;
}
v->push();
f(v);
rec(rec, v->l);
rec(rec, v->r);
};
rec(rec, v);
}
template<class Func>
static void inorder(node_t* v, const Func& f) {
auto rec = [&](auto rec, node_t* v) -> void {
if(v == nullptr) {
return;
}
v->push();
rec(rec, v->l);
f(v);
rec(rec, v->r);
};
rec(rec, v);
}
template<class Func>
static void postorder(node_t* v, const Func& f) {
auto rec = [&](auto rec, node_t* v) -> void {
if(v == nullptr) {
return;
}
v->push();
rec(rec, v->l);
rec(rec, v->r);
f(v);
};
rec(rec, v);
}
static int size(node_t* v) { return get_size(v); }
static bool empty(node_t* v) { return v == nullptr; }
private:
static int get_size(node_t* v) { return v != nullptr ? v->size : 0; }
};
template<class node_t, class Comp> const Comp rbst_base<node_t, Comp>::Compare = Comp();
} // namespace internal
} // namespace felix
#line 3 "library/data-structure/treap.hpp"
namespace felix {
namespace internal_treap {
template<class S, S (*e)(), S (*op)(S, S)>
struct treap_node {
S key = e(), sum = e();
int size = 1;
treap_node* l = nullptr;
treap_node* r = nullptr;
treap_node* p = nullptr;
treap_node() {}
treap_node(const S& s) : key(s), sum(s) {}
void push() {}
void pull() {
size = 1;
sum = key;
if(l != nullptr) {
size += l->size;
sum = op(l->sum, sum);
l->p = this;
}
if(r != nullptr) {
size += r->size;
sum = op(sum, r->sum);
r->p = this;
}
}
};
} // namespace internal_treap
template<class S, S (*e)(), S (*op)(S, S), class Comp = std::less<S>>
struct treap : public internal::rbst_base<internal_treap::treap_node<S, e, op>, Comp> {
using node_t = internal_treap::treap_node<S, e, op>;
using base = internal::rbst_base<internal_treap::treap_node<S, e, op>, Comp>;
using base::split_range_by_size, base::merge;
using base::root;
public:
treap() {}
void set(int k, const S& s) {
auto [lhs, mid, rhs] = split_range_by_size(k, k + 1);
mid.clear();
mid.insert(mid.end(), s);
merge(lhs), merge(mid), merge(rhs);
}
S prod(int l, int r) {
if(l == r) {
return e();
}
auto [lhs, mid, rhs] = split_range_by_size(l, r);
S ans = mid.root->sum;
merge(lhs), merge(mid), merge(rhs);
return ans;
}
S all_prod() {
root->push();
return root->sum;
}
};
} // namespace felix
#line 6 "test/data-structure/treap/yosupo-Range-Reverse-Range-Sum.test.cpp"
using namespace std;
using namespace felix;
using S = long long;
S e() { return 0; }
S op(S a, S b) { return a + b; }
S reversal(S a) { return a; }
using F = tuple<>;
F id() { return {}; }
S mapping(F, S s) { return s; }
F composition(F, F) { return {}; }
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
int n, q;
cin >> n >> q;
treap<S, e, op, reversal, F, id, mapping, composition> tree;
for(int i = 0; i < n; i++) {
S x;
cin >> x;
tree.insert(tree.end(), x);
}
while(q--) {
int type, l, r;
cin >> type >> l >> r;
if(type == 0) {
tree.reverse(l, r);
} else {
cout << tree.prod(l, r) << "\n";
}
}
return 0;
}