This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub fffelix-huang/CP-stuff
#define PROBLEM "https://judge.yosupo.jp/problem/sqrt_of_formal_power_series" #include <iostream> #include "../../../library/formal-power-series/poly.hpp" using namespace std; using namespace felix; int main() { ios::sync_with_stdio(false); cin.tie(0); int n; cin >> n; Poly<998244353> a(n); for(int i = 0; i < n; i++) { cin >> a[i]; } if(!a.has_sqrt()) { cout << "-1\n"; } else { a = a.sqrt(); for(int i = 0; i < n; i++) { cout << a[i] << " \n"[i == n - 1]; } } return 0; }
#line 1 "test/formal-power-series/poly/yosupo-Sqrt-of-Formal-Power-Series.test.cpp" #define PROBLEM "https://judge.yosupo.jp/problem/sqrt_of_formal_power_series" #include <iostream> #line 2 "library/formal-power-series/poly.hpp" #include <vector> #include <initializer_list> #include <algorithm> #include <functional> #include <cassert> #line 6 "library/modint/modint.hpp" #include <type_traits> #line 3 "library/misc/type-traits.hpp" #include <numeric> #line 5 "library/misc/type-traits.hpp" namespace felix { namespace internal { #ifndef _MSC_VER template<class T> using is_signed_int128 = typename std::conditional<std::is_same<T, __int128_t>::value || std::is_same<T, __int128>::value, std::true_type, std::false_type>::type; template<class T> using is_unsigned_int128 = typename std::conditional<std::is_same<T, __uint128_t>::value || std::is_same<T, unsigned __int128>::value, std::true_type, std::false_type>::type; template<class T> using make_unsigned_int128 = typename std::conditional<std::is_same<T, __int128_t>::value, __uint128_t, unsigned __int128>; template<class T> using is_integral = typename std::conditional<std::is_integral<T>::value || is_signed_int128<T>::value || is_unsigned_int128<T>::value, std::true_type, std::false_type>::type; template<class T> using is_signed_int = typename std::conditional<(is_integral<T>::value && std::is_signed<T>::value) || is_signed_int128<T>::value, std::true_type, std::false_type>::type; template<class T> using is_unsigned_int = typename std::conditional<(is_integral<T>::value && std::is_unsigned<T>::value) || is_unsigned_int128<T>::value, std::true_type, std::false_type>::type; template<class T> using to_unsigned = typename std::conditional<is_signed_int128<T>::value, make_unsigned_int128<T>, typename std::conditional<std::is_signed<T>::value, std::make_unsigned<T>, std::common_type<T>>::type>::type; #else template<class T> using is_integral = typename std::is_integral<T>; template<class T> using is_signed_int = typename std::conditional<is_integral<T>::value && std::is_signed<T>::value, std::true_type, std::false_type>::type; template<class T> using is_unsigned_int = typename std::conditional<is_integral<T>::value && std::is_unsigned<T>::value, std::true_type, std::false_type>::type; template<class T> using to_unsigned = typename std::conditional<is_signed_int<T>::value, std::make_unsigned<T>, std::common_type<T>>::type; #endif template<class T> using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>; template<class T> using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>; template<class T> using to_unsigned_t = typename to_unsigned<T>::type; template<class T> struct safely_multipliable {}; template<> struct safely_multipliable<short> { using type = int; }; template<> struct safely_multipliable<unsigned short> { using type = unsigned int; }; template<> struct safely_multipliable<int> { using type = long long; }; template<> struct safely_multipliable<unsigned int> { using type = unsigned long long; }; template<> struct safely_multipliable<long long> { using type = __int128; }; template<> struct safely_multipliable<unsigned long long> { using type = __uint128_t; }; template<class T> using safely_multipliable_t = typename safely_multipliable<T>::type; } // namespace internal } // namespace felix #line 2 "library/math/safe-mod.hpp" namespace felix { namespace internal { template<class T> constexpr T safe_mod(T x, T m) { x %= m; if(x < 0) { x += m; } return x; } } // namespace internal } // namespace felix #line 3 "library/math/inv-gcd.hpp" namespace felix { namespace internal { template<class T> constexpr std::pair<T, T> inv_gcd(T a, T b) { a = safe_mod(a, b); if(a == 0) { return {b, 0}; } T s = b, t = a; T m0 = 0, m1 = 1; while(t) { T u = s / t; s -= t * u; m0 -= m1 * u; auto tmp = s; s = t; t = tmp; tmp = m0; m0 = m1; m1 = tmp; } if(m0 < 0) { m0 += b / s; } return {s, m0}; } } // namespace internal } // namespace felix #line 9 "library/modint/modint.hpp" namespace felix { template<int id> struct modint { public: static constexpr int mod() { return (id > 0 ? id : md); } static constexpr void set_mod(int m) { if(id > 0 || md == m) { return; } md = m; fact.resize(1); inv_fact.resize(1); invs.resize(1); } static constexpr void prepare(int n) { int sz = (int) fact.size(); if(sz == mod()) { return; } n = 1 << std::__lg(2 * n - 1); if(n < sz) { return; } if(n < (sz - 1) * 2) { n = std::min((sz - 1) * 2, mod() - 1); } fact.resize(n + 1); inv_fact.resize(n + 1); invs.resize(n + 1); for(int i = sz; i <= n; i++) { fact[i] = fact[i - 1] * i; } auto eg = internal::inv_gcd(fact.back().val(), mod()); assert(eg.first == 1); inv_fact[n] = eg.second; for(int i = n - 1; i >= sz; i--) { inv_fact[i] = inv_fact[i + 1] * (i + 1); } for(int i = n; i >= sz; i--) { invs[i] = inv_fact[i] * fact[i - 1]; } } constexpr modint() : v(0) {} template<class T, internal::is_signed_int_t<T>* = nullptr> constexpr modint(T x) : v(x >= 0 ? x % mod() : x % mod() + mod()) {} template<class T, internal::is_unsigned_int_t<T>* = nullptr> constexpr modint(T x) : v(x % mod()) {} constexpr int val() const { return v; } constexpr modint inv() const { if(id > 0 && v < std::min(mod() >> 1, 1 << 18)) { prepare(v); return invs[v]; } else { auto eg = internal::inv_gcd(v, mod()); assert(eg.first == 1); return eg.second; } } constexpr modint& operator+=(const modint& rhs) & { v += rhs.v; if(v >= mod()) { v -= mod(); } return *this; } constexpr modint& operator-=(const modint& rhs) & { v -= rhs.v; if(v < 0) { v += mod(); } return *this; } constexpr modint& operator*=(const modint& rhs) & { v = 1LL * v * rhs.v % mod(); return *this; } constexpr modint& operator/=(const modint& rhs) & { return *this *= rhs.inv(); } friend constexpr modint operator+(modint lhs, modint rhs) { return lhs += rhs; } friend constexpr modint operator-(modint lhs, modint rhs) { return lhs -= rhs; } friend constexpr modint operator*(modint lhs, modint rhs) { return lhs *= rhs; } friend constexpr modint operator/(modint lhs, modint rhs) { return lhs /= rhs; } constexpr modint operator+() const { return *this; } constexpr modint operator-() const { return modint() - *this; } constexpr bool operator==(const modint& rhs) const { return v == rhs.v; } constexpr bool operator!=(const modint& rhs) const { return v != rhs.v; } constexpr modint pow(long long p) const { modint a(*this), res(1); if(p < 0) { a = a.inv(); p = -p; } while(p) { if(p & 1) { res *= a; } a *= a; p >>= 1; } return res; } constexpr bool has_sqrt() const { if(mod() == 2 || v == 0) { return true; } if(pow((mod() - 1) / 2).val() != 1) { return false; } return true; } constexpr modint sqrt() const { if(mod() == 2 || v < 2) { return *this; } assert(pow((mod() - 1) / 2).val() == 1); modint b = 1; while(b.pow((mod() - 1) >> 1).val() == 1) { b += 1; } int m = mod() - 1, e = __builtin_ctz(m); m >>= e; modint x = modint(*this).pow((m - 1) >> 1); modint y = modint(*this) * x * x; x *= v; modint z = b.pow(m); while(y.val() != 1) { int j = 0; modint t = y; while(t.val() != 1) { t *= t; j++; } z = z.pow(1LL << (e - j - 1)); x *= z, z *= z, y *= z; e = j; } return x; } friend std::istream& operator>>(std::istream& in, modint& num) { long long x; in >> x; num = modint<id>(x); return in; } friend std::ostream& operator<<(std::ostream& out, const modint& num) { return out << num.val(); } public: static std::vector<modint> fact, inv_fact, invs; private: int v; static int md; }; template<int id> int modint<id>::md = 998244353; template<int id> std::vector<modint<id>> modint<id>::fact = {1}; template<int id> std::vector<modint<id>> modint<id>::inv_fact = {1}; template<int id> std::vector<modint<id>> modint<id>::invs = {0}; using modint998244353 = modint<998244353>; using modint1000000007 = modint<1000000007>; namespace internal { template<class T> struct is_modint : public std::false_type {}; template<int id> struct is_modint<modint<id>> : public std::true_type {}; template<class T, class ENABLE = void> struct is_static_modint : public std::false_type {}; template<int id> struct is_static_modint<modint<id>, std::enable_if_t<(id > 0)>> : public std::true_type {}; template<class T> using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>; template<class T, class ENABLE = void> struct is_dynamic_modint : public std::false_type {}; template<int id> struct is_dynamic_modint<modint<id>, std::enable_if_t<(id <= 0)>> : public std::true_type {}; template<class T> using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>; } // namespace internal } // namespace felix #line 3 "library/convolution/ntt.hpp" #include <array> #line 4 "library/math/pow-mod.hpp" namespace felix { namespace internal { template<class T> constexpr T pow_mod_constexpr(T x, long long n, T m) { using U = safely_multipliable_t<T>; if(m == 1) { return 0; } U r = 1, y = safe_mod(x, m); while(n) { if(n & 1) { r = (r * y) % m; } y = (y * y) % m; n >>= 1; } return r; } } // namespace internal } // namespace felix #line 4 "library/math/primitive-root.hpp" namespace felix { namespace internal { constexpr int primitive_root_constexpr(int m) { if(m == 998244353) return 3; if(m == 167772161) return 3; if(m == 469762049) return 3; if(m == 754974721) return 11; if(m == 2) return 1; int divs[20] = {}; divs[0] = 2; int cnt = 1; int x = (m - 1) / 2; x >>= __builtin_ctz(x); for(int i = 3; 1LL * i * i <= x; i += 2) { if(x % i == 0) { divs[cnt++] = i; while(x % i == 0) { x /= i; } } } if(x > 1) { divs[cnt++] = x; } for(int g = 2;; g++) { bool ok = true; for(int i = 0; i < cnt; i++) { if(pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) { ok = false; break; } } if(ok) { return g; } } assert(false); } } // namespace internal } // namespace felix #line 11 "library/convolution/ntt.hpp" namespace felix { namespace internal { template<int mod> struct NTT_prepare { using mint = modint<mod>; static constexpr int primitive_root = primitive_root_constexpr(mod); static constexpr int level = __builtin_ctz(mod - 1); std::array<mint, level + 1> root, iroot; std::array<mint, std::max(0, level - 2 + 1)> rate2, irate2; std::array<mint, std::max(0, level - 3 + 1)> rate3, irate3; constexpr NTT_prepare() { root[level] = mint(primitive_root).pow((mod - 1) >> level); iroot[level] = root[level].inv(); for(int i = level - 1; i >= 0; i--) { root[i] = root[i + 1] * root[i + 1]; iroot[i] = iroot[i + 1] * iroot[i + 1]; } { mint prod = 1, iprod = 1; for(int i = 0; i <= level - 2; i++) { rate2[i] = root[i + 2] * prod; irate2[i] = iroot[i + 2] * iprod; prod *= iroot[i + 2]; iprod *= root[i + 2]; } } { mint prod = 1, iprod = 1; for(int i = 0; i <= level - 3; i++) { rate3[i] = root[i + 3] * prod; irate3[i] = iroot[i + 3] * iprod; prod *= iroot[i + 3]; iprod *= root[i + 3]; } } } }; template<int mod> struct NTT { using mint = modint<mod>; static NTT_prepare<mod> info; static void NTT4(std::vector<mint>& a) { int n = (int) a.size(); int h = __builtin_ctz(n); int len = 0; while(len < h) { if(h - len == 1) { int p = 1 << (h - len - 1); mint rot = 1; for(int s = 0; s < (1 << len); s++) { int offset = s << (h - len); for(int i = 0; i < p; i++) { auto l = a[i + offset]; auto r = a[i + offset + p] * rot; a[i + offset] = l + r; a[i + offset + p] = l - r; } if(s + 1 != (1 << len)) { rot *= info.rate2[__builtin_ctz(~(unsigned int) s)]; } } len++; } else { int p = 1 << (h - len - 2); mint rot = 1, imag = info.root[2]; for(int s = 0; s < (1 << len); s++) { mint rot2 = rot * rot; mint rot3 = rot2 * rot; int offset = s << (h - len); for(int i = 0; i < p; i++) { auto mod2 = 1ULL * mod * mod; auto a0 = 1ULL * a[i + offset].val(); auto a1 = 1ULL * a[i + offset + p].val() * rot.val(); auto a2 = 1ULL * a[i + offset + 2 * p].val() * rot2.val(); auto a3 = 1ULL * a[i + offset + 3 * p].val() * rot3.val(); auto a1na3imag = 1ULL * mint(a1 + mod2 - a3).val() * imag.val(); auto na2 = mod2 - a2; a[i + offset] = a0 + a2 + a1 + a3; a[i + offset + 1 * p] = a0 + a2 + (2 * mod2 - (a1 + a3)); a[i + offset + 2 * p] = a0 + na2 + a1na3imag; a[i + offset + 3 * p] = a0 + na2 + (mod2 - a1na3imag); } if(s + 1 != (1 << len)) rot *= info.rate3[__builtin_ctz(~(unsigned int) s)]; } len += 2; } } } static void iNTT4(std::vector<mint>& a) { int n = (int) a.size(); int h = __builtin_ctz(n); int len = h; while(len) { if(len == 1) { int p = 1 << (h - len); mint irot = 1; for(int s = 0; s < (1 << (len - 1)); s++) { int offset = s << (h - len + 1); for(int i = 0; i < p; i++) { auto l = a[i + offset]; auto r = a[i + offset + p]; a[i + offset] = l + r; a[i + offset + p] = 1ULL * (mod + l.val() - r.val()) * irot.val(); } if(s + 1 != (1 << (len - 1))) { irot *= info.irate2[__builtin_ctz(~(unsigned int) s)]; } } len--; } else { int p = 1 << (h - len); mint irot = 1, iimag = info.iroot[2]; for(int s = 0; s < (1 << (len - 2)); s++) { mint irot2 = irot * irot; mint irot3 = irot2 * irot; int offset = s << (h - len + 2); for(int i = 0; i < p; i++) { auto a0 = 1ULL * a[i + offset + 0 * p].val(); auto a1 = 1ULL * a[i + offset + 1 * p].val(); auto a2 = 1ULL * a[i + offset + 2 * p].val(); auto a3 = 1ULL * a[i + offset + 3 * p].val(); auto a2na3iimag = 1ULL * mint((mod + a2 - a3) * iimag.val()).val(); a[i + offset] = a0 + a1 + a2 + a3; a[i + offset + 1 * p] = (a0 + (mod - a1) + a2na3iimag) * irot.val(); a[i + offset + 2 * p] = (a0 + a1 + (mod - a2) + (mod - a3)) * irot2.val(); a[i + offset + 3 * p] = (a0 + (mod - a1) + (mod - a2na3iimag)) * irot3.val(); } if(s + 1 != (1 << (len - 2))) { irot *= info.irate3[__builtin_ctz(~(unsigned int) s)]; } } len -= 2; } } } }; template<int mod> NTT_prepare<mod> NTT<mod>::info; template<class T> std::vector<T> convolution_naive(const std::vector<T>& a, const std::vector<T>& b) { int n = (int) a.size(), m = (int) b.size(); std::vector<T> ans(n + m - 1); if(n >= m) { for(int i = 0; i < n; i++) { for(int j = 0; j < m; j++) { ans[i + j] += a[i] * b[j]; } } } else { for(int j = 0; j < m; j++) { for(int i = 0; i < n; i++) { ans[i + j] += a[i] * b[j]; } } } return ans; } template<class mint, internal::is_static_modint_t<mint>* = nullptr> std::vector<mint> convolution_ntt(std::vector<mint> a, std::vector<mint> b) { int n = (int) a.size(), m = (int) b.size(); int sz = 1 << std::__lg(2 * (n + m - 1) - 1); a.resize(sz); b.resize(sz); NTT<mint::mod()>::NTT4(a); NTT<mint::mod()>::NTT4(b); for(int i = 0; i < sz; i++) { a[i] *= b[i]; } NTT<mint::mod()>::iNTT4(a); a.resize(n + m - 1); mint iz = mint(sz).inv(); for(int i = 0; i < n + m - 1; i++) { a[i] *= iz; } return a; } } // namespace internal template<class mint, internal::is_static_modint_t<mint>* = nullptr> std::vector<mint> convolution(std::vector<mint>&& a, std::vector<mint>&& b) { int n = (int) a.size(), m = (int) b.size(); if(n == 0 || m == 0) { return {}; } int sz = 1 << std::__lg(2 * (n + m - 1) - 1); assert((mint::mod() - 1) % sz == 0); if(std::min(n, m) < 128) { return internal::convolution_naive(a, b); } return internal::convolution_ntt(a, b); } template<class mint, internal::is_static_modint_t<mint>* = nullptr> std::vector<mint> convolution(const std::vector<mint>& a, const std::vector<mint>& b) { int n = (int) a.size(), m = (int) b.size(); if(n == 0 || m == 0) { return {}; } int sz = 1 << std::__lg(2 * (n + m - 1) - 1); assert((mint::mod() - 1) % sz == 0); if(std::min(n, m) < 128) { return internal::convolution_naive(a, b); } return internal::convolution_ntt(a, b); } template<int mod, class T, std::enable_if_t<internal::is_integral<T>::value>* = nullptr> std::vector<T> convolution(const std::vector<T>& a, const std::vector<T>& b) { using mint = modint<mod>; int n = (int) a.size(), m = (int) b.size(); if(n == 0 || m == 0) { return {}; } int sz = 1 << std::__lg(2 * (n + m - 1) - 1); assert((mod - 1) % sz == 0); std::vector<mint> a2(a.begin(), a.end()); std::vector<mint> b2(b.begin(), b.end()); auto c2 = convolution(std::move(a2), std::move(b2)); std::vector<T> c(n + m - 1); for(int i = 0; i < n + m - 1; i++) { c[i] = c2[i].val(); } return c; } template<class T> std::vector<__uint128_t> convolution_u128(const std::vector<T>& a, const std::vector<T>& b) { static constexpr int m0 = 167772161; // 2^25 static constexpr int m1 = 469762049; // 2^26 static constexpr int m2 = 754974721; // 2^24 static constexpr int r01 = internal::inv_gcd(m0, m1).second; static constexpr int r02 = internal::inv_gcd(m0, m2).second; static constexpr int r12 = internal::inv_gcd(m1, m2).second; static constexpr int r02r12 = 1LL * r02 * r12 % m2; static constexpr long long w1 = m0; static constexpr long long w2 = 1LL * m0 * m1; int n = (int) a.size(), m = (int) b.size(); if(n == 0 || m == 0) { return {}; } std::vector<__uint128_t> c(n + m - 1); if(std::min(n, m) < 128) { std::vector<__uint128_t> a2(a.begin(), a.end()); std::vector<__uint128_t> b2(b.begin(), b.end()); return internal::convolution_naive(a2, b2); } static constexpr int MAX_AB_BIT = 24; static_assert(m0 % (1ULL << MAX_AB_BIT) == 1, "m0 isn't enough to support an array length of 2^24."); static_assert(m1 % (1ULL << MAX_AB_BIT) == 1, "m1 isn't enough to support an array length of 2^24."); static_assert(m2 % (1ULL << MAX_AB_BIT) == 1, "m2 isn't enough to support an array length of 2^24."); assert(n + m - 1 <= (1 << MAX_AB_BIT)); auto c0 = convolution<m0>(a, b); auto c1 = convolution<m1>(a, b); auto c2 = convolution<m2>(a, b); for(int i = 0; i < n + m - 1; i++) { long long n1 = c1[i], n2 = c2[i]; long long x = c0[i]; long long y = (n1 + m1 - x) * r01 % m1; long long z = ((n2 + m2 - x) * r02r12 + (m2 - y) * r12) % m2; c[i] = x + y * w1 + __uint128_t(z) * w2; } return c; } template<class mint, internal::is_static_modint_t<mint>* = nullptr> std::vector<mint> convolution_large(const std::vector<mint>& a, const std::vector<mint>& b) { static constexpr int max_size = (mint::mod() - 1) & -(mint::mod() - 1); static constexpr int half_size = max_size >> 1; static constexpr int inv_max_size = internal::inv_gcd(max_size, mint::mod()).second; const int n = (int) a.size(), m = (int) b.size(); if(n == 0 || m == 0) { return {}; } if(std::min(n, m) < 128 || n + m - 1 <= max_size) { return internal::convolution_naive(a, b); } const int dn = (n + half_size - 1) / half_size; const int dm = (m + half_size - 1) / half_size; std::vector<std::vector<mint>> as(dn), bs(dm); for(int i = 0; i < dn; ++i) { const int offset = half_size * i; as[i] = std::vector<mint>(a.begin() + offset, a.begin() + std::min(n, offset + half_size)); as[i].resize(max_size); internal::NTT<mint::mod()>::NTT4(as[i]); } for(int j = 0; j < dm; ++j) { const int offset = half_size * j; bs[j] = std::vector<mint>(b.begin() + offset, b.begin() + std::min(m, offset + half_size)); bs[j].resize(max_size); internal::NTT<mint::mod()>::NTT4(bs[j]); } std::vector<std::vector<mint>> cs(dn + dm - 1, std::vector<mint>(max_size)); for(int i = 0; i < dn; ++i) { for(int j = 0; j < dm; ++j) { for(int k = 0; k < max_size; ++k) { cs[i + j][k] += as[i][k] * bs[j][k]; } } } std::vector<mint> c(n + m - 1); for(int i = 0; i < dn + dm - 1; ++i) { internal::NTT<mint::mod()>::iNTT4(cs[i]); const int offset = half_size * i; const int jmax = std::min(n + m - 1 - offset, max_size); for(int j = 0; j < jmax; ++j) { c[offset + j] += cs[i][j] * inv_max_size; } } return c; } } // namespace felix #line 9 "library/formal-power-series/poly.hpp" namespace felix { template<int mod> struct Poly { using mint = modint<mod>; public: Poly() {} explicit Poly(int n) : a(n) {} explicit Poly(const std::vector<mint>& a) : a(a) {} Poly(const std::initializer_list<mint>& a) : a(a) {} template<class F> explicit Poly(int n, F f) : a(n) { for(int i = 0; i < n; i++) { a[i] = f(i); } } constexpr int size() const { return (int) a.size(); } constexpr void resize(int n) { a.resize(n); } constexpr void shrink() { while(size() && a.back() == 0) { a.pop_back(); } } constexpr mint at(int idx) const { if(idx >= 0 && idx < size()) { return a[idx]; } else { return 0; } } constexpr mint& operator[](int idx) { return a[idx]; } constexpr friend Poly operator+(const Poly& a, const Poly& b) { Poly c(std::max(a.size(), b.size())); for(int i = 0; i < c.size(); i++) { c[i] = a.at(i) + b.at(i); } return c; } constexpr friend Poly operator-(const Poly& a, const Poly& b) { Poly c(std::max(a.size(), b.size())); for(int i = 0; i < c.size(); i++) { c[i] = a.at(i) - b.at(i); } return c; } constexpr friend Poly operator*(Poly a, Poly b) { return Poly(convolution(a.a, b.a)); } constexpr friend Poly operator*(mint a, Poly b) { for(int i = 0; i < b.size(); i++) { b[i] *= a; } return b; } constexpr friend Poly operator*(Poly a, mint b) { for(int i = 0; i < a.size(); i++) { a[i] *= b; } return a; } constexpr Poly& operator+=(Poly b) { return (*this) = (*this) + b; } constexpr Poly& operator-=(Poly b) { return (*this) = (*this) - b; } constexpr Poly& operator*=(Poly b) { return (*this) = (*this) * b; } constexpr Poly& operator*=(mint b) { return (*this) = (*this) * b; } constexpr Poly mulxk(int k) const { auto b = a; b.insert(b.begin(), k, mint(0)); return Poly(b); } constexpr Poly modxk(int k) const { k = std::min(k, size()); return Poly(std::vector<mint>(a.begin(), a.begin() + k)); } constexpr Poly divxk(int k) const { if(size() <= k) { return Poly(); } return Poly(std::vector<mint>(a.begin() + k, a.end())); } constexpr Poly deriv() const { if(a.empty()) { return Poly(); } Poly c(size() - 1); for(int i = 0; i < size() - 1; ++i) { c[i] = (i + 1) * a[i + 1]; } return c; } constexpr Poly integr() const { Poly c(size() + 1); mint::prepare(size()); for(int i = 0; i < size(); ++i) { c[i + 1] = a[i] / mint(i + 1); } return c; } constexpr Poly inv(int m = -1) const { if(m == -1) { m = size(); } Poly x{a[0].inv()}; int k = 1; while(k < m) { k *= 2; x = (x * (Poly{mint(2)} - modxk(k) * x)).modxk(k); } return x.modxk(m); } constexpr Poly log(int m = -1) const { if(m == -1) { m = size(); } return (deriv() * inv(m)).integr().modxk(m); } constexpr Poly exp(int m = -1) const { if(m == -1) { m = size(); } Poly x{mint(1)}; int k = 1; while(k < m) { k *= 2; x = (x * (Poly{mint(1)} - x.log(k) + modxk(k))).modxk(k); } return x.modxk(m); } constexpr Poly pow(long long k, int m = -1) const { if(m == -1) { m = size(); } if(k == 0) { Poly b(m); b[0] = 1; return b; } int s = 0, sz = size(); while(s < sz && a[s].val() == 0) { s++; } if(s == sz) { return *this; } if(m > 0 && s >= (sz + k - 1) / k) { return Poly(m); } if(s * k >= m) { return Poly(m); } return (((divxk(s) * a[s].inv()).log(m) * mint(k)).exp(m) * a[s].pow(k)).mulxk(s * k).modxk(m); } constexpr bool has_sqrt() const { if(size() == 0) { return true; } int x = 0; while(x < size() && a[x].val() == 0) { x++; } if(x == size()) { return true; } if(x % 2 == 1) { return false; } mint y = a[x]; return (y == 0 || y.pow((mod - 1) / 2) == 1); } constexpr Poly sqrt(int m = -1) const { if(m == -1) { m = size(); } if(size() == 0) { return Poly(); } int x = 0; while(x < size() && a[x].val() == 0) { x++; } if(x == size()) { return Poly(size()); } Poly f = divxk(x); Poly g({mint(f[0]).sqrt()}); mint inv2 = mint(1) / 2; for(int i = 1; i < m; i *= 2) { g = (g + f.modxk(i * 2) * g.inv(i * 2)) * inv2; } return g.modxk(m).mulxk(x / 2); } constexpr Poly shift(mint c) const { int n = size(); mint::prepare(n); Poly b(*this); for(int i = 0; i < n; i++) { b[i] *= mint::fact[i]; } std::reverse(b.a.begin(), b.a.end()); Poly exp_cx(std::vector<mint>(n, mint(1))); for(int i = 1; i < n; i++) { exp_cx[i] = exp_cx[i - 1] * c / i; } b = (b * exp_cx).modxk(n); std::reverse(b.a.begin(), b.a.end()); for(int i = 0; i < n; i++) { b[i] *= mint::inv_fact[i]; } return b; } constexpr Poly mulT(Poly b) const { if(b.size() == 0) { return Poly(); } int n = b.size(); std::reverse(b.a.begin(), b.a.end()); return ((*this) * b).divxk(n - 1); } std::vector<mint> eval(std::vector<mint> x) const { if(size() == 0) { return std::vector<mint>(x.size(), mint(0)); } const int n = std::max((int) x.size(), size()); std::vector<Poly> q(4 * n); std::vector<mint> ans(x.size()); x.resize(n); std::function<void(int, int, int)> build = [&](int p, int l, int r) { if(r - l == 1) { q[p] = Poly{1, -x[l]}; } else { int m = (l + r) / 2; build(2 * p, l, m); build(2 * p + 1, m, r); q[p] = q[2 * p] * q[2 * p + 1]; } }; build(1, 0, n); std::function<void(int, int, int, const Poly&)> work = [&](int p, int l, int r, const Poly& num) { if(r - l == 1) { if(l < (int) ans.size()) { ans[l] = num.at(0); } } else { int m = (l + r) / 2; work(2 * p, l, m, num.mulT(q[2 * p + 1]).modxk(m - l)); work(2 * p + 1, m, r, num.mulT(q[2 * p]).modxk(r - m)); } }; work(1, 0, n, mulT(q[1].inv(n))); return ans; } private: std::vector<mint> a; }; } // namespace felix #line 5 "test/formal-power-series/poly/yosupo-Sqrt-of-Formal-Power-Series.test.cpp" using namespace std; using namespace felix; int main() { ios::sync_with_stdio(false); cin.tie(0); int n; cin >> n; Poly<998244353> a(n); for(int i = 0; i < n; i++) { cin >> a[i]; } if(!a.has_sqrt()) { cout << "-1\n"; } else { a = a.sqrt(); for(int i = 0; i < n; i++) { cout << a[i] << " \n"[i == n - 1]; } } return 0; }