This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub fffelix-huang/CP-stuff
#define PROBLEM "https://judge.yosupo.jp/problem/discrete_logarithm_mod" #include <iostream> #include "../../../library/math/discrete-log.hpp" using namespace std; using namespace felix; int main() { ios::sync_with_stdio(false); cin.tie(0); int tt; cin >> tt; while(tt--) { int x, y, m; cin >> x >> y >> m; cout << discrete_log(x, y, m) << "\n"; } return 0; }
#line 1 "test/math/discrete-log/yosupo-Discrete-Logarithm.test.cpp" #define PROBLEM "https://judge.yosupo.jp/problem/discrete_logarithm_mod" #include <iostream> #line 2 "library/math/discrete-log.hpp" #include <cmath> #include <cassert> #line 2 "library/data-structure/pbds.hpp" #include <ext/pb_ds/assoc_container.hpp> #line 2 "library/random/splitmix64.hpp" #include <chrono> namespace felix { namespace internal { // http://xoshiro.di.unimi.it/splitmix64.c struct splitmix64_hash { static unsigned long long splitmix64(unsigned long long x) { x += 0x9e3779b97f4a7c15; x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9; x = (x ^ (x >> 27)) * 0x94d049bb133111eb; return x ^ (x >> 31); } unsigned long long operator()(unsigned long long x) const { static const unsigned long long FIXED_RANDOM = std::chrono::steady_clock::now().time_since_epoch().count(); return splitmix64(x + FIXED_RANDOM); } }; } // namespace internal } // namespace felix #line 4 "library/data-structure/pbds.hpp" namespace felix { template<class T, class U, class H = internal::splitmix64_hash> using hash_map = __gnu_pbds::gp_hash_table<T, U, H>; template<class T, class H = internal::splitmix64_hash> using hash_set = hash_map<T, __gnu_pbds::null_type, H>; } // namespace felix #line 2 "library/modint/barrett.hpp" namespace felix { namespace internal { // Fast modular multiplication by barrett reduction // Reference: https://en.wikipedia.org/wiki/Barrett_reduction struct barrett { unsigned int m; unsigned long long im; explicit barrett(unsigned int _m) : m(_m), im((unsigned long long)(-1) / _m + 1) {} unsigned int umod() const { return m; } unsigned int mul(unsigned int a, unsigned int b) const { unsigned long long z = a; z *= b; #ifdef _MSC_VER unsigned long long x; _umul128(z, im, &x); #else unsigned long long x = (unsigned long long)(((unsigned __int128)(z) * im) >> 64); #endif unsigned long long y = x * m; return (unsigned int)(z - y + (z < y ? m : 0)); } }; } // namespace internal } // namespace felix #line 2 "library/math/binary-gcd.hpp" namespace felix { template<class T> inline T binary_gcd(T a, T b) { if(a == 0 || b == 0) { return a | b; } int8_t n = __builtin_ctzll(a); int8_t m = __builtin_ctzll(b); a >>= n; b >>= m; while(a != b) { T d = a - b; int8_t s = __builtin_ctzll(d); bool f = a > b; b = f ? b : a; a = (f ? d : -d) >> s; } return a << (n < m ? n : m); } } // namespace felix #line 7 "library/math/discrete-log.hpp" namespace felix { int discrete_log(int a, int b, int m) { assert(b < m); if(b == 1 || m == 1) { return 0; } int n = (int) std::sqrt(m) + 1, e = 1, f = 1, j = 1; hash_map<int, int> baby; internal::barrett bt(m); while(j <= n && (e = f = bt.mul(e, a)) != b) { baby[bt.mul(e, b)] = j++; } if(e == b) { return j; } if(binary_gcd(m, e) == binary_gcd(m, b)) { for(int i = 2; i < n + 2; i++) { e = bt.mul(e, f); if(baby.find(e) != baby.end()) { return n * i - baby[e]; } } } return -1; } } // namespace felix #line 5 "test/math/discrete-log/yosupo-Discrete-Logarithm.test.cpp" using namespace std; using namespace felix; int main() { ios::sync_with_stdio(false); cin.tie(0); int tt; cin >> tt; while(tt--) { int x, y, m; cin >> x >> y >> m; cout << discrete_log(x, y, m) << "\n"; } return 0; }