This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "https://judge.yosupo.jp/problem/factorize"
#include <iostream>
#include "../../../library/math/factorize.hpp"
using namespace std;
using namespace felix;
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
int tt;
cin >> tt;
while(tt--) {
long long n;
cin >> n;
auto factors = factorize(n);
cout << factors.size();
for(auto x : factors) {
cout << " " << x;
}
cout << "\n";
}
return 0;
}
#line 1 "test/math/factorize/yosupo-Factorize.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/factorize"
#include <iostream>
#line 2 "library/math/factorize.hpp"
#include <vector>
#include <cassert>
#include <algorithm>
#line 3 "library/misc/type-traits.hpp"
#include <numeric>
#include <type_traits>
namespace felix {
namespace internal {
#ifndef _MSC_VER
template<class T> using is_signed_int128 = typename std::conditional<std::is_same<T, __int128_t>::value || std::is_same<T, __int128>::value, std::true_type, std::false_type>::type;
template<class T> using is_unsigned_int128 = typename std::conditional<std::is_same<T, __uint128_t>::value || std::is_same<T, unsigned __int128>::value, std::true_type, std::false_type>::type;
template<class T> using make_unsigned_int128 = typename std::conditional<std::is_same<T, __int128_t>::value, __uint128_t, unsigned __int128>;
template<class T> using is_integral = typename std::conditional<std::is_integral<T>::value || is_signed_int128<T>::value || is_unsigned_int128<T>::value, std::true_type, std::false_type>::type;
template<class T> using is_signed_int = typename std::conditional<(is_integral<T>::value && std::is_signed<T>::value) || is_signed_int128<T>::value, std::true_type, std::false_type>::type;
template<class T> using is_unsigned_int = typename std::conditional<(is_integral<T>::value && std::is_unsigned<T>::value) || is_unsigned_int128<T>::value, std::true_type, std::false_type>::type;
template<class T> using to_unsigned = typename std::conditional<is_signed_int128<T>::value, make_unsigned_int128<T>, typename std::conditional<std::is_signed<T>::value, std::make_unsigned<T>, std::common_type<T>>::type>::type;
#else
template<class T> using is_integral = typename std::is_integral<T>;
template<class T> using is_signed_int = typename std::conditional<is_integral<T>::value && std::is_signed<T>::value, std::true_type, std::false_type>::type;
template<class T> using is_unsigned_int = typename std::conditional<is_integral<T>::value && std::is_unsigned<T>::value, std::true_type, std::false_type>::type;
template<class T> using to_unsigned = typename std::conditional<is_signed_int<T>::value, std::make_unsigned<T>, std::common_type<T>>::type;
#endif
template<class T> using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;
template<class T> using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;
template<class T> using to_unsigned_t = typename to_unsigned<T>::type;
template<class T> struct safely_multipliable {};
template<> struct safely_multipliable<short> { using type = int; };
template<> struct safely_multipliable<unsigned short> { using type = unsigned int; };
template<> struct safely_multipliable<int> { using type = long long; };
template<> struct safely_multipliable<unsigned int> { using type = unsigned long long; };
template<> struct safely_multipliable<long long> { using type = __int128; };
template<> struct safely_multipliable<unsigned long long> { using type = __uint128_t; };
template<class T> using safely_multipliable_t = typename safely_multipliable<T>::type;
} // namespace internal
} // namespace felix
#line 2 "library/math/binary-gcd.hpp"
namespace felix {
template<class T>
inline T binary_gcd(T a, T b) {
if(a == 0 || b == 0) {
return a | b;
}
int8_t n = __builtin_ctzll(a);
int8_t m = __builtin_ctzll(b);
a >>= n;
b >>= m;
while(a != b) {
T d = a - b;
int8_t s = __builtin_ctzll(d);
bool f = a > b;
b = f ? b : a;
a = (f ? d : -d) >> s;
}
return a << (n < m ? n : m);
}
} // namespace felix
#line 2 "library/math/safe-mod.hpp"
namespace felix {
namespace internal {
template<class T>
constexpr T safe_mod(T x, T m) {
x %= m;
if(x < 0) {
x += m;
}
return x;
}
} // namespace internal
} // namespace felix
#line 4 "library/math/pow-mod.hpp"
namespace felix {
namespace internal {
template<class T>
constexpr T pow_mod_constexpr(T x, long long n, T m) {
using U = safely_multipliable_t<T>;
if(m == 1) {
return 0;
}
U r = 1, y = safe_mod(x, m);
while(n) {
if(n & 1) {
r = (r * y) % m;
}
y = (y * y) % m;
n >>= 1;
}
return r;
}
} // namespace internal
} // namespace felix
#line 4 "library/math/is-prime.hpp"
namespace felix {
namespace internal {
bool miller_rabin(long long n, std::vector<long long> x) {
long long d = n - 1;
d >>= __builtin_ctzll(d);
for(auto a : x) {
if(n <= a) {
return true;
}
long long t = d;
__uint128_t y = pow_mod_constexpr(a, d, n);
while(t != n - 1 && y != 1 && y != n - 1ULL) {
y = y * y % n;
t <<= 1;
}
if(y != n - 1ULL && t % 2 == 0) {
return false;
}
}
return true;
}
} // namespace internal
bool is_prime(long long n) {
if(n <= 1) {
return false;
}
for(int p : {2, 3, 5, 7, 11, 13, 17, 19, 23, 29}) {
if(n % p == 0) {
return n == p;
}
}
if(n < (1LL << 30)) {
return internal::miller_rabin(n, {2, 7, 61});
}
return internal::miller_rabin(n, {2, 325, 9375, 28178, 450775, 9780504, 1795265022});
}
} // namespace felix
#line 2 "library/random/rng.hpp"
#include <chrono>
namespace felix {
inline unsigned long long rng() {
static unsigned long long SEED = std::chrono::steady_clock::now().time_since_epoch().count();
SEED ^= SEED << 7;
SEED ^= SEED >> 9;
return SEED;
}
} // namespace felix
#line 10 "library/math/factorize.hpp"
namespace felix {
template<class T>
T pollard_rho(T n) {
using U = internal::safely_multipliable_t<T>;
if(n % 2 == 0) {
return 2;
}
if(is_prime(n)) {
return n;
}
while(true) {
const T R = rng() % (n - 1) + 1;
auto f = [&](T x) -> T {
return internal::safe_mod<U>(U(x) * x + R, n);
};
T x = 1, y = 2, ys = 1, q = 1, g = 1;
constexpr int m = 128;
for(int r = 1; g == 1; r <<= 1) {
x = y;
for(int i = 0; i < r; i++) {
y = f(y);
}
for(int k = 0; k < r && g == 1; k += m) {
ys = y;
for(int i = 0; i < std::min(m, r - k); i++) {
y = f(y);
q = internal::safe_mod<U>(U(q) * internal::safe_mod(x - y, n), n);
}
g = binary_gcd(q, n);
}
}
if(g == n) {
do {
ys = f(ys);
T x2 = internal::safe_mod(x - ys, n);
g = binary_gcd(x2, n);
} while(g == 1);
}
if(g != n) {
return g;
}
}
assert(false);
}
template<class T>
std::vector<T> factorize(T n) {
if(n <= 1) {
return {};
}
std::vector<T> res = {n};
for(int i = 0; i < (int) res.size(); i++) {
T p = pollard_rho(res[i]);
if(p != res[i]) {
res[i] /= p;
res.push_back(p);
i--;
}
}
std::sort(res.begin(), res.end());
return res;
}
template<class T>
std::vector<T> divisors(T n) {
if(n == 0) {
return {};
}
std::vector<std::pair<T, int>> v;
for(auto p : factorize(n)) {
if(v.empty() || v.back().first != p) {
v.emplace_back(p, 1);
} else {
v.back().second++;
}
}
std::vector<T> res;
auto f = [&](auto f, int i, T x) -> void {
if(i == (int) v.size()) {
res.push_back(x);
return;
}
for(int j = v[i].second; ; j--) {
f(f, i + 1, x);
if(j == 0) {
break;
}
x *= v[i].first;
}
};
f(f, 0, 1);
std::sort(res.begin(), res.end());
return res;
}
} // namespace felix
#line 5 "test/math/factorize/yosupo-Factorize.test.cpp"
using namespace std;
using namespace felix;
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
int tt;
cin >> tt;
while(tt--) {
long long n;
cin >> n;
auto factors = factorize(n);
cout << factors.size();
for(auto x : factors) {
cout << " " << x;
}
cout << "\n";
}
return 0;
}