This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub fffelix-huang/CP-stuff
#define PROBLEM "https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=GRL_5_D" #include <iostream> #include "../../../library/tree/hld.hpp" #include "../../../library/data-structure/fenwick.hpp" using namespace std; using namespace felix; int main() { ios::sync_with_stdio(false); cin.tie(0); int n; cin >> n; HLD hld(n); for(int i = 0; i < n; i++) { int m; cin >> m; for(int j = 0; j < m; j++) { int x; cin >> x; hld.add_edge(i, x); } } hld.build(0); fenwick<int> fenw(n); int q; cin >> q; while(q--) { int type, u; cin >> type >> u; if(type == 0) { int w; cin >> w; fenw.add(hld.id[u], +w); fenw.add(hld.id[u] + hld.subtree_size[u], -w); } else { cout << fenw.get(hld.id[u] + 1) << "\n"; } } return 0; }
#line 1 "test/tree/hld/aoj-grl-Range-Query-on-a-Tree.test.cpp" #define PROBLEM "https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=GRL_5_D" #include <iostream> #line 2 "library/tree/hld.hpp" #include <vector> #include <array> #include <cassert> #include <algorithm> #include <cmath> #line 4 "library/data-structure/sparse-table.hpp" namespace felix { template<class S, S (*op)(S, S)> struct sparse_table { public: sparse_table() {} explicit sparse_table(const std::vector<S>& a) { n = (int) a.size(); int max_log = std::__lg(n) + 1; mat.resize(max_log); mat[0] = a; for(int j = 1; j < max_log; ++j) { mat[j].resize(n - (1 << j) + 1); for(int i = 0; i <= n - (1 << j); ++i) { mat[j][i] = op(mat[j - 1][i], mat[j - 1][i + (1 << (j - 1))]); } } } S prod(int from, int to) const { assert(0 <= from && from <= to && to <= n - 1); int lg = std::__lg(to - from + 1); return op(mat[lg][from], mat[lg][to - (1 << lg) + 1]); } private: int n; std::vector<std::vector<S>> mat; }; } // namespace felix #line 8 "library/tree/hld.hpp" namespace felix { struct HLD { private: static constexpr std::pair<int, int> __lca_op(std::pair<int, int> a, std::pair<int, int> b) { return std::min(a, b); } public: int n; std::vector<std::vector<int>> g; std::vector<int> subtree_size; std::vector<int> parent; std::vector<int> depth; std::vector<int> top; std::vector<int> tour; std::vector<int> first_occurrence; std::vector<int> id; std::vector<std::pair<int, int>> euler_tour; sparse_table<std::pair<int, int>, __lca_op> st; HLD() : n(0) {} explicit HLD(int _n) : n(_n), g(_n), subtree_size(_n), parent(_n), depth(_n), top(_n), first_occurrence(_n), id(_n) { tour.reserve(n); euler_tour.reserve(2 * n - 1); } void add_edge(int u, int v) { assert(0 <= u && u < n); assert(0 <= v && v < n); g[u].push_back(v); g[v].push_back(u); } void build(int root = 0) { assert(0 <= root && root < n); parent[root] = -1; top[root] = root; dfs_sz(root); dfs_link(root); st = std::move(sparse_table<std::pair<int, int>, __lca_op>(euler_tour)); } int get_lca(int u, int v) { assert(0 <= u && u < n); assert(0 <= v && v < n); int L = first_occurrence[u]; int R = first_occurrence[v]; if(L > R) { std::swap(L, R); } return st.prod(L, R).second; } bool is_ancestor(int u, int v) { assert(0 <= u && u < n); assert(0 <= v && v < n); return id[u] <= id[v] && id[v] < id[u] + subtree_size[u]; } bool on_path(int a, int x, int b) { return (is_ancestor(x, a) || is_ancestor(x, b)) && is_ancestor(get_lca(a, b), x); } int get_distance(int u, int v) { return depth[u] + depth[v] - 2 * depth[(get_lca(u, v))]; } std::pair<int, std::array<int, 2>> get_diameter() const { std::pair<int, int> u_max = {-1, -1}; std::pair<int, int> ux_max = {-1, -1}; std::pair<int, std::array<int, 2>> uxv_max = {-1, std::array<int, 2>{-1, -1}}; for(auto [d, u] : euler_tour) { u_max = std::max(u_max, std::make_pair(d, u)); ux_max = std::max(ux_max, std::make_pair(u_max.first - 2 * d, u_max.second)); uxv_max = std::max(uxv_max, std::make_pair(ux_max.first + d, std::array<int, 2>{ux_max.second, u})); } return uxv_max; } int get_kth_ancestor(int u, int k) { assert(0 <= u && u < n); if(depth[u] < k) { return -1; } int d = depth[u] - k; while(depth[top[u]] > d) { u = parent[top[u]]; } return tour[id[u] + d - depth[u]]; } int get_kth_node_on_path(int a, int b, int k) { int z = get_lca(a, b); int fi = depth[a] - depth[z]; int se = depth[b] - depth[z]; if(k < 0 || k > fi + se) { return -1; } if(k < fi) { return get_kth_ancestor(a, k); } else { return get_kth_ancestor(b, fi + se - k); } } std::vector<std::pair<int, int>> get_path(int u, int v, bool include_lca) { if(u == v && !include_lca) { return {}; } std::vector<std::pair<int, int>> lhs, rhs; while(top[u] != top[v]) { if(depth[top[u]] > depth[top[v]]) { lhs.emplace_back(u, top[u]); u = parent[top[u]]; } else { rhs.emplace_back(top[v], v); v = parent[top[v]]; } } if(u != v || include_lca) { if(include_lca) { lhs.emplace_back(u, v); } else { int d = std::abs(depth[u] - depth[v]); if(depth[u] < depth[v]) { rhs.emplace_back(tour[id[v] - d + 1], v); } else { lhs.emplace_back(u, tour[id[u] - d + 1]); } } } std::reverse(rhs.begin(), rhs.end()); lhs.insert(lhs.end(), rhs.begin(), rhs.end()); return lhs; } private: void dfs_sz(int u) { if(parent[u] != -1) { g[u].erase(std::find(g[u].begin(), g[u].end(), parent[u])); } subtree_size[u] = 1; for(auto& v : g[u]) { parent[v] = u; depth[v] = depth[u] + 1; dfs_sz(v); subtree_size[u] += subtree_size[v]; if(subtree_size[v] > subtree_size[g[u][0]]) { std::swap(v, g[u][0]); } } } void dfs_link(int u) { first_occurrence[u] = (int) euler_tour.size(); id[u] = (int) tour.size(); euler_tour.emplace_back(depth[u], u); tour.push_back(u); for(auto v : g[u]) { top[v] = (v == g[u][0] ? top[u] : v); dfs_link(v); euler_tour.emplace_back(depth[u], u); } } }; } // namespace felix #line 4 "library/data-structure/fenwick.hpp" namespace felix { template<class S> struct fenwick { public: fenwick() : n(0) {} explicit fenwick(int _n) : n(_n), data(_n) {} void add(int p, S x) { for(int i = p + 1; i <= n; i += i & -i) { data[i - 1] += x; } } // [0, p) S get(int p) const { auto ans = S(); for(int i = p; i > 0; i -= i & -i) { ans += data[i - 1]; } return ans; } // [l, r) S sum(int l, int r) const { return get(r) - get(l); } // 0-based int kth(S k) const { int x = 0; for(int i = 1 << std::__lg(n); i > 0; i >>= 1) { if (x + i <= n && k >= data[x + i - 1]) { x += i; k -= data[x - 1]; } } return x; } private: int n; std::vector<S> data; }; } // namespace felix #line 6 "test/tree/hld/aoj-grl-Range-Query-on-a-Tree.test.cpp" using namespace std; using namespace felix; int main() { ios::sync_with_stdio(false); cin.tie(0); int n; cin >> n; HLD hld(n); for(int i = 0; i < n; i++) { int m; cin >> m; for(int j = 0; j < m; j++) { int x; cin >> x; hld.add_edge(i, x); } } hld.build(0); fenwick<int> fenw(n); int q; cin >> q; while(q--) { int type, u; cin >> type >> u; if(type == 0) { int w; cin >> w; fenw.add(hld.id[u], +w); fenw.add(hld.id[u] + hld.subtree_size[u], -w); } else { cout << fenw.get(hld.id[u] + 1) << "\n"; } } return 0; }