This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub fffelix-huang/CP-stuff
#include "library/geometry/geometry.hpp"
#pragma once #include <vector> #include <algorithm> #include "point.hpp" #include "line.hpp" namespace felix { namespace geometry { namespace internal { template<class T> constexpr int sign(T x) { return x == 0 ? 0 : (x < 0 ? -1 : +1); } } // namespace internal // LEFT: +1, RIGHT: -1, STRAIGHT: 0 template<class T> int orientation(Point<T> a, Point<T> b, Point<T> c) { return internal::sign(cross(b - a, c - a)); } template<class T> bool collinearity(Point<T> a, Point<T> b, Point<T> c) { return internal::sign(cross(a - c, b - c)) == 0; } template<class T> bool between(Point<T> a, Point<T> b, Point<T> c) { return collinearity(a, c, b) && internal::sign(dot(a - b, c - b)) <= 0; } template<class T> bool segment_intersection(Line<T> a, Line<T> b) { int a123 = orientation(a.a, a.b, b.a); int a124 = orientation(a.a, a.b, b.b); int a341 = orientation(b.a, b.b, a.a); int a342 = orientation(b.a, b.b, a.b); if(a123 == 0 && a124 == 0) { return between(a.a, b.a, a.b) || between(a.a, b.b, a.b) || between(b.a, a.a, b.b) || between(b.a, a.b, b.b); } return a123 * a124 <= 0 && a341 * a342 <= 0; } template<class T> Point<T> line_intersection(Line<T> a, Line<T> b) { T a123 = cross(a.vectorize(), b.a - a.a); T a124 = cross(a.vectorize(), b.b - a.a); return (b.b * a123 - b.a * a124) / (a123 - a124); } template<class T> Point<T> projection(Line<T> L, Point<T> p) { auto v = L.vectorize(); T x = abs(v); return L.a + v / x * dot(p - L.a, v) / x; } template<class T> Point<T> reflection(Line<T> L, Point<T> p) { auto proj = projection(L, p); return p + (proj - p) * 2; } } // namespace geometry } // namespace felix
#line 2 "library/geometry/geometry.hpp" #include <vector> #include <algorithm> #line 2 "library/geometry/point.hpp" #include <iostream> #include <cmath> namespace felix { namespace geometry { template<class T> struct Point { T x, y; Point(T a = 0, T b = 0) : x(a), y(b) {} Point(const std::pair<T, T>& p) : x(p.first), y(p.second) {} explicit constexpr operator std::pair<T, T>() const { return std::pair<T, T>(x, y); } constexpr Point& operator+=(const Point& rhs) & { x += rhs.x, y += rhs.y; return *this; } constexpr Point& operator-=(const Point& rhs) & { x -= rhs.x, y -= rhs.y; return *this; } constexpr Point& operator*=(const T& rhs) & { x *= rhs, y *= rhs; return *this; } constexpr Point& operator/=(const T& rhs) & { x /= rhs, y /= rhs; return *this; } constexpr Point operator+() const { return *this; } constexpr Point operator-() const { return Point(-x, -y); } friend constexpr Point operator+(Point lhs, Point rhs) { return lhs += rhs; } friend constexpr Point operator-(Point lhs, Point rhs) { return lhs -= rhs; } friend constexpr Point operator*(Point lhs, T rhs) { return lhs *= rhs; } friend constexpr Point operator/(Point lhs, T rhs) { return lhs /= rhs; } constexpr bool operator==(const Point& rhs) const { return x == rhs.x && y == rhs.y; } constexpr bool operator!=(const Point& rhs) const { return !(*this == rhs); } // rotate counter-clockwise constexpr Point rotate(T theta) const { T sin_t = std::sin(theta), cos_t = std::cos(theta); return Point(x * cos_t - y * sin_t, x * sin_t + y * cos_t); } friend constexpr T abs2(Point p) { return p.x * p.x + p.y * p.y; } friend constexpr long double abs(Point p) { return std::sqrt(abs2(p)); } friend constexpr long double angle(Point p) { return std::atan2(p.y, p.x); } friend constexpr T dot(Point lhs, Point rhs) { return lhs.x * rhs.x + lhs.y * rhs.y; } friend constexpr T cross(Point lhs, Point rhs) { return lhs.x * rhs.y - lhs.y * rhs.x; } friend constexpr std::istream& operator>>(std::istream& in, Point& p) { return in >> p.x >> p.y; } }; } // namespace geometry } // namespace felix #line 4 "library/geometry/line.hpp" namespace felix { namespace geometry { template<class T> struct Line { Point<T> a, b; Line() {} Line(Point<T> _a, Point<T> _b) : a(_a), b(_b) {} constexpr Point<T> vectorize() const { return b - a; } friend constexpr std::istream& operator>>(std::istream& in, Line& l) { return in >> l.a >> l.b; } }; } // namespace geometry } // namespace felix #line 6 "library/geometry/geometry.hpp" namespace felix { namespace geometry { namespace internal { template<class T> constexpr int sign(T x) { return x == 0 ? 0 : (x < 0 ? -1 : +1); } } // namespace internal // LEFT: +1, RIGHT: -1, STRAIGHT: 0 template<class T> int orientation(Point<T> a, Point<T> b, Point<T> c) { return internal::sign(cross(b - a, c - a)); } template<class T> bool collinearity(Point<T> a, Point<T> b, Point<T> c) { return internal::sign(cross(a - c, b - c)) == 0; } template<class T> bool between(Point<T> a, Point<T> b, Point<T> c) { return collinearity(a, c, b) && internal::sign(dot(a - b, c - b)) <= 0; } template<class T> bool segment_intersection(Line<T> a, Line<T> b) { int a123 = orientation(a.a, a.b, b.a); int a124 = orientation(a.a, a.b, b.b); int a341 = orientation(b.a, b.b, a.a); int a342 = orientation(b.a, b.b, a.b); if(a123 == 0 && a124 == 0) { return between(a.a, b.a, a.b) || between(a.a, b.b, a.b) || between(b.a, a.a, b.b) || between(b.a, a.b, b.b); } return a123 * a124 <= 0 && a341 * a342 <= 0; } template<class T> Point<T> line_intersection(Line<T> a, Line<T> b) { T a123 = cross(a.vectorize(), b.a - a.a); T a124 = cross(a.vectorize(), b.b - a.a); return (b.b * a123 - b.a * a124) / (a123 - a124); } template<class T> Point<T> projection(Line<T> L, Point<T> p) { auto v = L.vectorize(); T x = abs(v); return L.a + v / x * dot(p - L.a, v) / x; } template<class T> Point<T> reflection(Line<T> L, Point<T> p) { auto proj = projection(L, p); return p + (proj - p) * 2; } } // namespace geometry } // namespace felix