Felix's Library

This documentation is automatically generated by online-judge-tools/verification-helper

View the Project on GitHub fffelix-huang/CP-stuff

:warning: library/geometry/point-in-convex-hull.hpp

Depends on

Code

#pragma once
#include <vector>
#include "point.hpp"
#include "geometry.hpp"

namespace felix {

namespace geometry {

// Convex Hull must be sorted in counter-clockwise order
// ON: -1, IN: +1, OUT: 0
template<class T>
int point_in_convex_hull(const std::vector<Point<T>>& a, const Point<T>& p) {
	int n = (int) a.size();
	if(between(a[0], a[1], p) || between(a[0], a[n - 1], p)) {
		return -1;
	}
	int l = 0, r = n - 1;
	while(l <= r) {
		int m = (l + r) / 2;
		auto a1 = cross(a[m] - a[0], p - a[0]);
		auto a2 = cross(a[(m + 1) % n] - a[0], p - a[0]);
		if(a1 >= 0 && a2 <= 0) {
			auto res = cross(a[(m + 1) % n] - a[m], p - a[m]);
			return res > 0 ? 1 : (res >= 0 ? -1 : 0);
		}
		if(a1 < 0) {
			r = m - 1;
		} else {
			l = m + 1;
		}
	}
	return 0;
}

} // namespace geometry

} // namespace felix
#line 2 "library/geometry/point-in-convex-hull.hpp"
#include <vector>
#line 2 "library/geometry/point.hpp"
#include <iostream>
#include <cmath>

namespace felix {

namespace geometry {

template<class T>
struct Point {
	T x, y;

	Point(T a = 0, T b = 0) : x(a), y(b) {}
	Point(const std::pair<T, T>& p) : x(p.first), y(p.second) {}

	explicit constexpr operator std::pair<T, T>() const { return std::pair<T, T>(x, y); }

	constexpr Point& operator+=(const Point& rhs) & {
		x += rhs.x, y += rhs.y;
		return *this;
	}

	constexpr Point& operator-=(const Point& rhs) & {
		x -= rhs.x, y -= rhs.y;
		return *this;
	}

	constexpr Point& operator*=(const T& rhs) & {
		x *= rhs, y *= rhs;
		return *this;
	}

	constexpr Point& operator/=(const T& rhs) & {
		x /= rhs, y /= rhs;
		return *this;
	}

	constexpr Point operator+() const { return *this; }
	constexpr Point operator-() const { return Point(-x, -y); }
	friend constexpr Point operator+(Point lhs, Point rhs) { return lhs += rhs; }
	friend constexpr Point operator-(Point lhs, Point rhs) { return lhs -= rhs; }
	friend constexpr Point operator*(Point lhs, T rhs) { return lhs *= rhs; }
	friend constexpr Point operator/(Point lhs, T rhs) { return lhs /= rhs; }
	constexpr bool operator==(const Point& rhs) const { return x == rhs.x && y == rhs.y; }
	constexpr bool operator!=(const Point& rhs) const { return !(*this == rhs); }

	// rotate counter-clockwise
	constexpr Point rotate(T theta) const {
		T sin_t = std::sin(theta), cos_t = std::cos(theta);
		return Point(x * cos_t - y * sin_t, x * sin_t + y * cos_t);
	}

	friend constexpr T abs2(Point p) { return p.x * p.x + p.y * p.y; }
	friend constexpr long double abs(Point p) { return std::sqrt(abs2(p)); }
	friend constexpr long double angle(Point p) { return std::atan2(p.y, p.x); }
	friend constexpr T dot(Point lhs, Point rhs) { return lhs.x * rhs.x + lhs.y * rhs.y; }
	friend constexpr T cross(Point lhs, Point rhs) { return lhs.x * rhs.y - lhs.y * rhs.x; }

	friend constexpr std::istream& operator>>(std::istream& in, Point& p) {
		return in >> p.x >> p.y;
	}
};

} // namespace geometry

} // namespace felix
#line 3 "library/geometry/geometry.hpp"
#include <algorithm>
#line 4 "library/geometry/line.hpp"

namespace felix {

namespace geometry {

template<class T>
struct Line {
	Point<T> a, b;
 	
 	Line() {}
	Line(Point<T> _a, Point<T> _b) : a(_a), b(_b) {}

	constexpr Point<T> vectorize() const { return b - a; }

	friend constexpr std::istream& operator>>(std::istream& in, Line& l) {
		return in >> l.a >> l.b;
	}
};

} // namespace geometry

} // namespace felix
#line 6 "library/geometry/geometry.hpp"

namespace felix {

namespace geometry {

namespace internal {

template<class T> constexpr int sign(T x) { return x == 0 ? 0 : (x < 0 ? -1 : +1); }

} // namespace internal

// LEFT: +1, RIGHT: -1, STRAIGHT: 0
template<class T>
int orientation(Point<T> a, Point<T> b, Point<T> c) {
	return internal::sign(cross(b - a, c - a));
}

template<class T>
bool collinearity(Point<T> a, Point<T> b, Point<T> c) {
	return internal::sign(cross(a - c, b - c)) == 0;
}

template<class T>
bool between(Point<T> a, Point<T> b, Point<T> c) {
	return collinearity(a, c, b) && internal::sign(dot(a - b, c - b)) <= 0;
}

template<class T>
bool segment_intersection(Line<T> a, Line<T> b) {
	int a123 = orientation(a.a, a.b, b.a);
	int a124 = orientation(a.a, a.b, b.b);
	int a341 = orientation(b.a, b.b, a.a);
	int a342 = orientation(b.a, b.b, a.b);
	if(a123 == 0 && a124 == 0) {
		return between(a.a, b.a, a.b) || between(a.a, b.b, a.b) || between(b.a, a.a, b.b) || between(b.a, a.b, b.b);
	}
	return a123 * a124 <= 0 && a341 * a342 <= 0;
}

template<class T>
Point<T> line_intersection(Line<T> a, Line<T> b) {
	T a123 = cross(a.vectorize(), b.a - a.a);
	T a124 = cross(a.vectorize(), b.b - a.a);
	return (b.b * a123 - b.a * a124) / (a123 - a124);
}

template<class T>
Point<T> projection(Line<T> L, Point<T> p) {
	auto v = L.vectorize();
	T x = abs(v);
	return L.a + v / x * dot(p - L.a, v) / x;
}

template<class T>
Point<T> reflection(Line<T> L, Point<T> p) {
	auto proj = projection(L, p);
	return p + (proj - p) * 2;
}

} // namespace geometry

} // namespace felix
#line 5 "library/geometry/point-in-convex-hull.hpp"

namespace felix {

namespace geometry {

// Convex Hull must be sorted in counter-clockwise order
// ON: -1, IN: +1, OUT: 0
template<class T>
int point_in_convex_hull(const std::vector<Point<T>>& a, const Point<T>& p) {
	int n = (int) a.size();
	if(between(a[0], a[1], p) || between(a[0], a[n - 1], p)) {
		return -1;
	}
	int l = 0, r = n - 1;
	while(l <= r) {
		int m = (l + r) / 2;
		auto a1 = cross(a[m] - a[0], p - a[0]);
		auto a2 = cross(a[(m + 1) % n] - a[0], p - a[0]);
		if(a1 >= 0 && a2 <= 0) {
			auto res = cross(a[(m + 1) % n] - a[m], p - a[m]);
			return res > 0 ? 1 : (res >= 0 ? -1 : 0);
		}
		if(a1 < 0) {
			r = m - 1;
		} else {
			l = m + 1;
		}
	}
	return 0;
}

} // namespace geometry

} // namespace felix
Back to top page