This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub fffelix-huang/CP-stuff
#define PROBLEM "https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=DSL_2_G" #include <iostream> #include <vector> #include <climits> #include "../../../library/data-structure/lazy-segtree.hpp" using namespace std; using namespace felix; struct S { long long sum; int sz; S(long long a = 0, int b = 0) : sum(a), sz(b) {} }; S e() { return S(); } S op(S a, S b) { return S(a.sum + b.sum, a.sz + b.sz); } using F = long long; F id() { return 0; } S mapping(F f, S s) { s.sum += f * s.sz; return s; } F composition(F a, F b) { return a + b; } int main() { ios::sync_with_stdio(false); cin.tie(0); int n, q; cin >> n >> q; lazy_segtree<S, e, op, F, id, mapping, composition> seg(vector<S>(n, S(0, 1))); while(q--) { int type, l, r; cin >> type >> l >> r; --l; if(type == 0) { int x; cin >> x; seg.apply(l, r, F{x}); } else { cout << seg.prod(l, r).sum << "\n"; } } return 0; }
#line 1 "test/data-structure/lazy-segtree/aoj-dsl-RSQ-and-RAQ.test.cpp" #define PROBLEM "https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=DSL_2_G" #include <iostream> #include <vector> #include <climits> #line 3 "library/data-structure/lazy-segtree.hpp" #include <algorithm> #include <functional> #include <cassert> #line 6 "library/data-structure/segtree.hpp" namespace felix { template<class S, S (*e)(), S (*op)(S, S)> struct segtree { public: segtree() {} explicit segtree(int _n) : segtree(std::vector<S>(_n, e())) {} explicit segtree(const std::vector<S>& a): n(a.size()) { log = std::__lg(2 * n - 1); size = 1 << log; d.resize(size * 2, e()); for(int i = 0; i < n; ++i) { d[size + i] = a[i]; } for(int i = size - 1; i >= 1; i--) { update(i); } } void set(int p, S val) { assert(0 <= p && p < n); p += size; d[p] = val; for(int i = 1; i <= log; ++i) { update(p >> i); } } S get(int p) const { assert(0 <= p && p < n); return d[p + size]; } S operator[](int p) const { return get(p); } S prod(int l, int r) const { assert(0 <= l && l <= r && r <= n); S sml = e(), smr = e(); for(l += size, r += size; l < r; l >>= 1, r >>= 1) { if(l & 1) { sml = op(sml, d[l++]); } if(r & 1) { smr = op(d[--r], smr); } } return op(sml, smr); } S all_prod() const { return d[1]; } template<bool (*f)(S)> int max_right(int l) { return max_right(l, [](S x) { return f(x); }); } template<class F> int max_right(int l, F f) { assert(0 <= l && l <= n); assert(f(e())); if(l == n) { return n; } l += size; S sm = e(); do { while(~l & 1) { l >>= 1; } if(!f(op(sm, d[l]))) { while(l < size) { push(l); l <<= 1; if(f(op(sm, d[l]))) { sm = op(sm, d[l++]); } } return l - size; } sm = op(sm, d[l++]); } while((l & -l) != l); return n; } template<bool (*f)(S)> int min_left(int r) { return min_left(r, [](S x) { return f(x); }); } template<class F> int min_left(int r, F f) { assert(0 <= r && r <= n); assert(f(e())); if(r == 0) { return 0; } r += size; S sm = e(); do { r--; while(r > 1 && (r & 1)) { r >>= 1; } if(!f(op(d[r], sm))) { while(r < size) { push(r); r = 2 * r + 1; if(f(op(d[r], sm))) { sm = op(d[r--], sm); } } return r + 1 - size; } sm = op(d[r], sm); } while((r & -r) != r); return 0; } protected: int n, size, log; std::vector<S> d; void update(int v) { d[v] = op(d[2 * v], d[2 * v + 1]); } virtual void push(int p) {} }; } // namespace felix #line 7 "library/data-structure/lazy-segtree.hpp" namespace felix { template<class S, S (*e)(), S (*op)(S, S), class F, F (*id)(), S (*mapping)(F, S), F (*composition)(F, F)> struct lazy_segtree : public segtree<S, e, op> { using base = segtree<S, e, op>; public: lazy_segtree() {} explicit lazy_segtree(int _n) : lazy_segtree(std::vector<S>(_n, e())) {} explicit lazy_segtree(const std::vector<S>& v) : base(v), lz(size, id()) {} void set(int p, S x) { push_down(p); base::set(p, x); } S get(int p) { push_down(p); return base::get(p); } S operator[](int p) { return get(p); } S prod(int l, int r) { if(l == r) { return e(); } push_down(l, r); return base::prod(l, r); } void apply(int p, F f) { assert(0 <= p && p < n); push_down(p); base::set(p, mapping(f, d[p])); } void apply(int l, int r, F f) { assert(0 <= l && l <= r && r <= n); if(l == r) { return; } push_down(l, r); l += size, r += size; { int l2 = l, r2 = r; while(l < r) { if(l & 1) { all_apply(l++, f); } if(r & 1) { all_apply(--r, f); } l >>= 1, r >>= 1; } l = l2, r = r2; } for(int i = 1; i <= log; i++) { if(((l >> i) << i) != l) { update(l >> i); } if(((r >> i) << i) != r) { update((r - 1) >> i); } } } template<bool (*g)(S)> int max_right(int l) { return max_right(l, [](S x) { return g(x); }); } template<class G> int max_right(int l, G g) { assert(0 <= l && l <= n); assert(g(e())); if(l == n) { return n; } push_down(l); return base::max_right(l, g); } template<bool (*g)(S)> int min_left(int r) { return min_left(r, [](S x) { return g(x); }); } template<class G> int min_left(int r, G g) { assert(0 <= r && r <= n); assert(g(e())); if(r == 0) { return 0; } push_down(r - 1); return base::min_left(r, g); } protected: using base::n, base::log, base::size, base::d; using base::update; std::vector<F> lz; virtual void all_apply(int k, F f) { d[k] = mapping(f, d[k]); if(k < size) { lz[k] = composition(f, lz[k]); } } void push(int k) override { all_apply(2 * k, lz[k]); all_apply(2 * k + 1, lz[k]); lz[k] = id(); } void push_down(int p) { p += size; for(int i = log; i >= 1; i--) { push(p >> i); } } void push_down(int l, int r) { l += size, r += size; for(int i = log; i >= 1; i--) { if(((l >> i) << i) != l) { push(l >> i); } if(((r >> i) << i) != r) { push((r - 1) >> i); } } } }; } // namespace felix #line 7 "test/data-structure/lazy-segtree/aoj-dsl-RSQ-and-RAQ.test.cpp" using namespace std; using namespace felix; struct S { long long sum; int sz; S(long long a = 0, int b = 0) : sum(a), sz(b) {} }; S e() { return S(); } S op(S a, S b) { return S(a.sum + b.sum, a.sz + b.sz); } using F = long long; F id() { return 0; } S mapping(F f, S s) { s.sum += f * s.sz; return s; } F composition(F a, F b) { return a + b; } int main() { ios::sync_with_stdio(false); cin.tie(0); int n, q; cin >> n >> q; lazy_segtree<S, e, op, F, id, mapping, composition> seg(vector<S>(n, S(0, 1))); while(q--) { int type, l, r; cin >> type >> l >> r; --l; if(type == 0) { int x; cin >> x; seg.apply(l, r, F{x}); } else { cout << seg.prod(l, r).sum << "\n"; } } return 0; }