This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub fffelix-huang/CP-stuff
#include "library/data-structure/segtree.hpp"
#pragma once #include <vector> #include <algorithm> #include <functional> #include <cassert> namespace felix { template<class S, S (*e)(), S (*op)(S, S)> struct segtree { public: segtree() {} explicit segtree(int _n) : segtree(std::vector<S>(_n, e())) {} explicit segtree(const std::vector<S>& a): n(a.size()) { log = std::__lg(2 * n - 1); size = 1 << log; d.resize(size * 2, e()); for(int i = 0; i < n; ++i) { d[size + i] = a[i]; } for(int i = size - 1; i >= 1; i--) { update(i); } } void set(int p, S val) { assert(0 <= p && p < n); p += size; d[p] = val; for(int i = 1; i <= log; ++i) { update(p >> i); } } S get(int p) const { assert(0 <= p && p < n); return d[p + size]; } S operator[](int p) const { return get(p); } S prod(int l, int r) const { assert(0 <= l && l <= r && r <= n); S sml = e(), smr = e(); for(l += size, r += size; l < r; l >>= 1, r >>= 1) { if(l & 1) { sml = op(sml, d[l++]); } if(r & 1) { smr = op(d[--r], smr); } } return op(sml, smr); } S all_prod() const { return d[1]; } template<bool (*f)(S)> int max_right(int l) { return max_right(l, [](S x) { return f(x); }); } template<class F> int max_right(int l, F f) { assert(0 <= l && l <= n); assert(f(e())); if(l == n) { return n; } l += size; S sm = e(); do { while(~l & 1) { l >>= 1; } if(!f(op(sm, d[l]))) { while(l < size) { push(l); l <<= 1; if(f(op(sm, d[l]))) { sm = op(sm, d[l++]); } } return l - size; } sm = op(sm, d[l++]); } while((l & -l) != l); return n; } template<bool (*f)(S)> int min_left(int r) { return min_left(r, [](S x) { return f(x); }); } template<class F> int min_left(int r, F f) { assert(0 <= r && r <= n); assert(f(e())); if(r == 0) { return 0; } r += size; S sm = e(); do { r--; while(r > 1 && (r & 1)) { r >>= 1; } if(!f(op(d[r], sm))) { while(r < size) { push(r); r = 2 * r + 1; if(f(op(d[r], sm))) { sm = op(d[r--], sm); } } return r + 1 - size; } sm = op(d[r], sm); } while((r & -r) != r); return 0; } protected: int n, size, log; std::vector<S> d; void update(int v) { d[v] = op(d[2 * v], d[2 * v + 1]); } virtual void push(int p) {} }; } // namespace felix
#line 2 "library/data-structure/segtree.hpp" #include <vector> #include <algorithm> #include <functional> #include <cassert> namespace felix { template<class S, S (*e)(), S (*op)(S, S)> struct segtree { public: segtree() {} explicit segtree(int _n) : segtree(std::vector<S>(_n, e())) {} explicit segtree(const std::vector<S>& a): n(a.size()) { log = std::__lg(2 * n - 1); size = 1 << log; d.resize(size * 2, e()); for(int i = 0; i < n; ++i) { d[size + i] = a[i]; } for(int i = size - 1; i >= 1; i--) { update(i); } } void set(int p, S val) { assert(0 <= p && p < n); p += size; d[p] = val; for(int i = 1; i <= log; ++i) { update(p >> i); } } S get(int p) const { assert(0 <= p && p < n); return d[p + size]; } S operator[](int p) const { return get(p); } S prod(int l, int r) const { assert(0 <= l && l <= r && r <= n); S sml = e(), smr = e(); for(l += size, r += size; l < r; l >>= 1, r >>= 1) { if(l & 1) { sml = op(sml, d[l++]); } if(r & 1) { smr = op(d[--r], smr); } } return op(sml, smr); } S all_prod() const { return d[1]; } template<bool (*f)(S)> int max_right(int l) { return max_right(l, [](S x) { return f(x); }); } template<class F> int max_right(int l, F f) { assert(0 <= l && l <= n); assert(f(e())); if(l == n) { return n; } l += size; S sm = e(); do { while(~l & 1) { l >>= 1; } if(!f(op(sm, d[l]))) { while(l < size) { push(l); l <<= 1; if(f(op(sm, d[l]))) { sm = op(sm, d[l++]); } } return l - size; } sm = op(sm, d[l++]); } while((l & -l) != l); return n; } template<bool (*f)(S)> int min_left(int r) { return min_left(r, [](S x) { return f(x); }); } template<class F> int min_left(int r, F f) { assert(0 <= r && r <= n); assert(f(e())); if(r == 0) { return 0; } r += size; S sm = e(); do { r--; while(r > 1 && (r & 1)) { r >>= 1; } if(!f(op(d[r], sm))) { while(r < size) { push(r); r = 2 * r + 1; if(f(op(d[r], sm))) { sm = op(d[r--], sm); } } return r + 1 - size; } sm = op(d[r], sm); } while((r & -r) != r); return 0; } protected: int n, size, log; std::vector<S> d; void update(int v) { d[v] = op(d[2 * v], d[2 * v + 1]); } virtual void push(int p) {} }; } // namespace felix