This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub fffelix-huang/CP-stuff
#define PROBLEM "https://judge.yosupo.jp/problem/range_affine_range_sum" #include <iostream> #include <vector> #include "../../../library/data-structure/lazy-segtree.hpp" #include "../../../library/modint/modint.hpp" using namespace std; using namespace felix; using mint = modint998244353; struct S { mint sum; int size = 0; S() {} S(mint a, int b = 1) : sum(a), size(b) {} }; S e() { return S(); } S op(S a, S b) { a.sum += b.sum; a.size += b.size; return a; } struct F { mint a, b; bool bad = true; F() {} F(mint x, mint y) : a(x), b(y), bad(false) {} }; F id() { return F(); } S mapping(F f, S s) { if(f.bad || s.size == 0) { return s; } s.sum = f.a * s.sum + f.b * s.size; return s; } F composition(F f, F g) { if(f.bad || g.bad) { return f.bad ? g : f; } return F(f.a * g.a, f.a * g.b + f.b); } int main() { ios::sync_with_stdio(false); cin.tie(0); int n, q; cin >> n >> q; vector<S> a(n); for(int i = 0; i < n; i++) { cin >> a[i].sum; a[i].size = 1; } lazy_segtree<S, e, op, F, id, mapping, composition> seg(a); while(q--) { int type, l, r; cin >> type >> l >> r; if(type == 0) { mint a, b; cin >> a >> b; seg.apply(l, r, F(a, b)); } else { cout << seg.prod(l, r).sum << "\n"; } } return 0; }
#line 1 "test/data-structure/lazy-segtree/yosupo-Range-Affine-Range-Sum.test.cpp" #define PROBLEM "https://judge.yosupo.jp/problem/range_affine_range_sum" #include <iostream> #include <vector> #line 3 "library/data-structure/lazy-segtree.hpp" #include <algorithm> #include <functional> #include <cassert> #line 6 "library/data-structure/segtree.hpp" namespace felix { template<class S, S (*e)(), S (*op)(S, S)> struct segtree { public: segtree() {} explicit segtree(int _n) : segtree(std::vector<S>(_n, e())) {} explicit segtree(const std::vector<S>& a): n(a.size()) { log = std::__lg(2 * n - 1); size = 1 << log; d.resize(size * 2, e()); for(int i = 0; i < n; ++i) { d[size + i] = a[i]; } for(int i = size - 1; i >= 1; i--) { update(i); } } void set(int p, S val) { assert(0 <= p && p < n); p += size; d[p] = val; for(int i = 1; i <= log; ++i) { update(p >> i); } } S get(int p) const { assert(0 <= p && p < n); return d[p + size]; } S operator[](int p) const { return get(p); } S prod(int l, int r) const { assert(0 <= l && l <= r && r <= n); S sml = e(), smr = e(); for(l += size, r += size; l < r; l >>= 1, r >>= 1) { if(l & 1) { sml = op(sml, d[l++]); } if(r & 1) { smr = op(d[--r], smr); } } return op(sml, smr); } S all_prod() const { return d[1]; } template<bool (*f)(S)> int max_right(int l) { return max_right(l, [](S x) { return f(x); }); } template<class F> int max_right(int l, F f) { assert(0 <= l && l <= n); assert(f(e())); if(l == n) { return n; } l += size; S sm = e(); do { while(~l & 1) { l >>= 1; } if(!f(op(sm, d[l]))) { while(l < size) { push(l); l <<= 1; if(f(op(sm, d[l]))) { sm = op(sm, d[l++]); } } return l - size; } sm = op(sm, d[l++]); } while((l & -l) != l); return n; } template<bool (*f)(S)> int min_left(int r) { return min_left(r, [](S x) { return f(x); }); } template<class F> int min_left(int r, F f) { assert(0 <= r && r <= n); assert(f(e())); if(r == 0) { return 0; } r += size; S sm = e(); do { r--; while(r > 1 && (r & 1)) { r >>= 1; } if(!f(op(d[r], sm))) { while(r < size) { push(r); r = 2 * r + 1; if(f(op(d[r], sm))) { sm = op(d[r--], sm); } } return r + 1 - size; } sm = op(d[r], sm); } while((r & -r) != r); return 0; } protected: int n, size, log; std::vector<S> d; void update(int v) { d[v] = op(d[2 * v], d[2 * v + 1]); } virtual void push(int p) {} }; } // namespace felix #line 7 "library/data-structure/lazy-segtree.hpp" namespace felix { template<class S, S (*e)(), S (*op)(S, S), class F, F (*id)(), S (*mapping)(F, S), F (*composition)(F, F)> struct lazy_segtree : public segtree<S, e, op> { using base = segtree<S, e, op>; public: lazy_segtree() {} explicit lazy_segtree(int _n) : lazy_segtree(std::vector<S>(_n, e())) {} explicit lazy_segtree(const std::vector<S>& v) : base(v), lz(size, id()) {} void set(int p, S x) { push_down(p); base::set(p, x); } S get(int p) { push_down(p); return base::get(p); } S operator[](int p) { return get(p); } S prod(int l, int r) { if(l == r) { return e(); } push_down(l, r); return base::prod(l, r); } void apply(int p, F f) { assert(0 <= p && p < n); push_down(p); base::set(p, mapping(f, d[p])); } void apply(int l, int r, F f) { assert(0 <= l && l <= r && r <= n); if(l == r) { return; } push_down(l, r); l += size, r += size; { int l2 = l, r2 = r; while(l < r) { if(l & 1) { all_apply(l++, f); } if(r & 1) { all_apply(--r, f); } l >>= 1, r >>= 1; } l = l2, r = r2; } for(int i = 1; i <= log; i++) { if(((l >> i) << i) != l) { update(l >> i); } if(((r >> i) << i) != r) { update((r - 1) >> i); } } } template<bool (*g)(S)> int max_right(int l) { return max_right(l, [](S x) { return g(x); }); } template<class G> int max_right(int l, G g) { assert(0 <= l && l <= n); assert(g(e())); if(l == n) { return n; } push_down(l); return base::max_right(l, g); } template<bool (*g)(S)> int min_left(int r) { return min_left(r, [](S x) { return g(x); }); } template<class G> int min_left(int r, G g) { assert(0 <= r && r <= n); assert(g(e())); if(r == 0) { return 0; } push_down(r - 1); return base::min_left(r, g); } protected: using base::n, base::log, base::size, base::d; using base::update; std::vector<F> lz; virtual void all_apply(int k, F f) { d[k] = mapping(f, d[k]); if(k < size) { lz[k] = composition(f, lz[k]); } } void push(int k) override { all_apply(2 * k, lz[k]); all_apply(2 * k + 1, lz[k]); lz[k] = id(); } void push_down(int p) { p += size; for(int i = log; i >= 1; i--) { push(p >> i); } } void push_down(int l, int r) { l += size, r += size; for(int i = log; i >= 1; i--) { if(((l >> i) << i) != l) { push(l >> i); } if(((r >> i) << i) != r) { push((r - 1) >> i); } } } }; } // namespace felix #line 6 "library/modint/modint.hpp" #include <type_traits> #line 3 "library/misc/type-traits.hpp" #include <numeric> #line 5 "library/misc/type-traits.hpp" namespace felix { namespace internal { #ifndef _MSC_VER template<class T> using is_signed_int128 = typename std::conditional<std::is_same<T, __int128_t>::value || std::is_same<T, __int128>::value, std::true_type, std::false_type>::type; template<class T> using is_unsigned_int128 = typename std::conditional<std::is_same<T, __uint128_t>::value || std::is_same<T, unsigned __int128>::value, std::true_type, std::false_type>::type; template<class T> using make_unsigned_int128 = typename std::conditional<std::is_same<T, __int128_t>::value, __uint128_t, unsigned __int128>; template<class T> using is_integral = typename std::conditional<std::is_integral<T>::value || is_signed_int128<T>::value || is_unsigned_int128<T>::value, std::true_type, std::false_type>::type; template<class T> using is_signed_int = typename std::conditional<(is_integral<T>::value && std::is_signed<T>::value) || is_signed_int128<T>::value, std::true_type, std::false_type>::type; template<class T> using is_unsigned_int = typename std::conditional<(is_integral<T>::value && std::is_unsigned<T>::value) || is_unsigned_int128<T>::value, std::true_type, std::false_type>::type; template<class T> using to_unsigned = typename std::conditional<is_signed_int128<T>::value, make_unsigned_int128<T>, typename std::conditional<std::is_signed<T>::value, std::make_unsigned<T>, std::common_type<T>>::type>::type; #else template<class T> using is_integral = typename std::is_integral<T>; template<class T> using is_signed_int = typename std::conditional<is_integral<T>::value && std::is_signed<T>::value, std::true_type, std::false_type>::type; template<class T> using is_unsigned_int = typename std::conditional<is_integral<T>::value && std::is_unsigned<T>::value, std::true_type, std::false_type>::type; template<class T> using to_unsigned = typename std::conditional<is_signed_int<T>::value, std::make_unsigned<T>, std::common_type<T>>::type; #endif template<class T> using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>; template<class T> using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>; template<class T> using to_unsigned_t = typename to_unsigned<T>::type; template<class T> struct safely_multipliable {}; template<> struct safely_multipliable<short> { using type = int; }; template<> struct safely_multipliable<unsigned short> { using type = unsigned int; }; template<> struct safely_multipliable<int> { using type = long long; }; template<> struct safely_multipliable<unsigned int> { using type = unsigned long long; }; template<> struct safely_multipliable<long long> { using type = __int128; }; template<> struct safely_multipliable<unsigned long long> { using type = __uint128_t; }; template<class T> using safely_multipliable_t = typename safely_multipliable<T>::type; } // namespace internal } // namespace felix #line 2 "library/math/safe-mod.hpp" namespace felix { namespace internal { template<class T> constexpr T safe_mod(T x, T m) { x %= m; if(x < 0) { x += m; } return x; } } // namespace internal } // namespace felix #line 3 "library/math/inv-gcd.hpp" namespace felix { namespace internal { template<class T> constexpr std::pair<T, T> inv_gcd(T a, T b) { a = safe_mod(a, b); if(a == 0) { return {b, 0}; } T s = b, t = a; T m0 = 0, m1 = 1; while(t) { T u = s / t; s -= t * u; m0 -= m1 * u; auto tmp = s; s = t; t = tmp; tmp = m0; m0 = m1; m1 = tmp; } if(m0 < 0) { m0 += b / s; } return {s, m0}; } } // namespace internal } // namespace felix #line 9 "library/modint/modint.hpp" namespace felix { template<int id> struct modint { public: static constexpr int mod() { return (id > 0 ? id : md); } static constexpr void set_mod(int m) { if(id > 0 || md == m) { return; } md = m; fact.resize(1); inv_fact.resize(1); invs.resize(1); } static constexpr void prepare(int n) { int sz = (int) fact.size(); if(sz == mod()) { return; } n = 1 << std::__lg(2 * n - 1); if(n < sz) { return; } if(n < (sz - 1) * 2) { n = std::min((sz - 1) * 2, mod() - 1); } fact.resize(n + 1); inv_fact.resize(n + 1); invs.resize(n + 1); for(int i = sz; i <= n; i++) { fact[i] = fact[i - 1] * i; } auto eg = internal::inv_gcd(fact.back().val(), mod()); assert(eg.first == 1); inv_fact[n] = eg.second; for(int i = n - 1; i >= sz; i--) { inv_fact[i] = inv_fact[i + 1] * (i + 1); } for(int i = n; i >= sz; i--) { invs[i] = inv_fact[i] * fact[i - 1]; } } constexpr modint() : v(0) {} template<class T, internal::is_signed_int_t<T>* = nullptr> constexpr modint(T x) : v(x >= 0 ? x % mod() : x % mod() + mod()) {} template<class T, internal::is_unsigned_int_t<T>* = nullptr> constexpr modint(T x) : v(x % mod()) {} constexpr int val() const { return v; } constexpr modint inv() const { if(id > 0 && v < std::min(mod() >> 1, 1 << 18)) { prepare(v); return invs[v]; } else { auto eg = internal::inv_gcd(v, mod()); assert(eg.first == 1); return eg.second; } } constexpr modint& operator+=(const modint& rhs) & { v += rhs.v; if(v >= mod()) { v -= mod(); } return *this; } constexpr modint& operator-=(const modint& rhs) & { v -= rhs.v; if(v < 0) { v += mod(); } return *this; } constexpr modint& operator*=(const modint& rhs) & { v = 1LL * v * rhs.v % mod(); return *this; } constexpr modint& operator/=(const modint& rhs) & { return *this *= rhs.inv(); } friend constexpr modint operator+(modint lhs, modint rhs) { return lhs += rhs; } friend constexpr modint operator-(modint lhs, modint rhs) { return lhs -= rhs; } friend constexpr modint operator*(modint lhs, modint rhs) { return lhs *= rhs; } friend constexpr modint operator/(modint lhs, modint rhs) { return lhs /= rhs; } constexpr modint operator+() const { return *this; } constexpr modint operator-() const { return modint() - *this; } constexpr bool operator==(const modint& rhs) const { return v == rhs.v; } constexpr bool operator!=(const modint& rhs) const { return v != rhs.v; } constexpr modint pow(long long p) const { modint a(*this), res(1); if(p < 0) { a = a.inv(); p = -p; } while(p) { if(p & 1) { res *= a; } a *= a; p >>= 1; } return res; } constexpr bool has_sqrt() const { if(mod() == 2 || v == 0) { return true; } if(pow((mod() - 1) / 2).val() != 1) { return false; } return true; } constexpr modint sqrt() const { if(mod() == 2 || v < 2) { return *this; } assert(pow((mod() - 1) / 2).val() == 1); modint b = 1; while(b.pow((mod() - 1) >> 1).val() == 1) { b += 1; } int m = mod() - 1, e = __builtin_ctz(m); m >>= e; modint x = modint(*this).pow((m - 1) >> 1); modint y = modint(*this) * x * x; x *= v; modint z = b.pow(m); while(y.val() != 1) { int j = 0; modint t = y; while(t.val() != 1) { t *= t; j++; } z = z.pow(1LL << (e - j - 1)); x *= z, z *= z, y *= z; e = j; } return x; } friend std::istream& operator>>(std::istream& in, modint& num) { long long x; in >> x; num = modint<id>(x); return in; } friend std::ostream& operator<<(std::ostream& out, const modint& num) { return out << num.val(); } public: static std::vector<modint> fact, inv_fact, invs; private: int v; static int md; }; template<int id> int modint<id>::md = 998244353; template<int id> std::vector<modint<id>> modint<id>::fact = {1}; template<int id> std::vector<modint<id>> modint<id>::inv_fact = {1}; template<int id> std::vector<modint<id>> modint<id>::invs = {0}; using modint998244353 = modint<998244353>; using modint1000000007 = modint<1000000007>; namespace internal { template<class T> struct is_modint : public std::false_type {}; template<int id> struct is_modint<modint<id>> : public std::true_type {}; template<class T, class ENABLE = void> struct is_static_modint : public std::false_type {}; template<int id> struct is_static_modint<modint<id>, std::enable_if_t<(id > 0)>> : public std::true_type {}; template<class T> using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>; template<class T, class ENABLE = void> struct is_dynamic_modint : public std::false_type {}; template<int id> struct is_dynamic_modint<modint<id>, std::enable_if_t<(id <= 0)>> : public std::true_type {}; template<class T> using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>; } // namespace internal } // namespace felix #line 7 "test/data-structure/lazy-segtree/yosupo-Range-Affine-Range-Sum.test.cpp" using namespace std; using namespace felix; using mint = modint998244353; struct S { mint sum; int size = 0; S() {} S(mint a, int b = 1) : sum(a), size(b) {} }; S e() { return S(); } S op(S a, S b) { a.sum += b.sum; a.size += b.size; return a; } struct F { mint a, b; bool bad = true; F() {} F(mint x, mint y) : a(x), b(y), bad(false) {} }; F id() { return F(); } S mapping(F f, S s) { if(f.bad || s.size == 0) { return s; } s.sum = f.a * s.sum + f.b * s.size; return s; } F composition(F f, F g) { if(f.bad || g.bad) { return f.bad ? g : f; } return F(f.a * g.a, f.a * g.b + f.b); } int main() { ios::sync_with_stdio(false); cin.tie(0); int n, q; cin >> n >> q; vector<S> a(n); for(int i = 0; i < n; i++) { cin >> a[i].sum; a[i].size = 1; } lazy_segtree<S, e, op, F, id, mapping, composition> seg(a); while(q--) { int type, l, r; cin >> type >> l >> r; if(type == 0) { mint a, b; cin >> a >> b; seg.apply(l, r, F(a, b)); } else { cout << seg.prod(l, r).sum << "\n"; } } return 0; }