This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "https://judge.yosupo.jp/problem/range_affine_range_sum"
#include <iostream>
#include <vector>
#include "../../../library/data-structure/lazy-segtree.hpp"
#include "../../../library/modint/modint.hpp"
using namespace std;
using namespace felix;
using mint = modint998244353;
struct S {
mint sum;
int size = 0;
S() {}
S(mint a, int b = 1) : sum(a), size(b) {}
};
S e() { return S(); }
S op(S a, S b) {
a.sum += b.sum;
a.size += b.size;
return a;
}
struct F {
mint a, b;
bool bad = true;
F() {}
F(mint x, mint y) : a(x), b(y), bad(false) {}
};
F id() { return F(); }
S mapping(F f, S s) {
if(f.bad || s.size == 0) {
return s;
}
s.sum = f.a * s.sum + f.b * s.size;
return s;
}
F composition(F f, F g) {
if(f.bad || g.bad) {
return f.bad ? g : f;
}
return F(f.a * g.a, f.a * g.b + f.b);
}
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
int n, q;
cin >> n >> q;
vector<S> a(n);
for(int i = 0; i < n; i++) {
cin >> a[i].sum;
a[i].size = 1;
}
lazy_segtree<S, e, op, F, id, mapping, composition> seg(a);
while(q--) {
int type, l, r;
cin >> type >> l >> r;
if(type == 0) {
mint a, b;
cin >> a >> b;
seg.apply(l, r, F(a, b));
} else {
cout << seg.prod(l, r).sum << "\n";
}
}
return 0;
}
#line 1 "test/data-structure/lazy-segtree/yosupo-Range-Affine-Range-Sum.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/range_affine_range_sum"
#include <iostream>
#include <vector>
#line 3 "library/data-structure/lazy-segtree.hpp"
#include <algorithm>
#include <functional>
#include <cassert>
#line 6 "library/data-structure/segtree.hpp"
namespace felix {
template<class S, S (*e)(), S (*op)(S, S)>
struct segtree {
public:
segtree() {}
explicit segtree(int _n) : segtree(std::vector<S>(_n, e())) {}
explicit segtree(const std::vector<S>& a): n(a.size()) {
log = std::__lg(2 * n - 1);
size = 1 << log;
d.resize(size * 2, e());
for(int i = 0; i < n; ++i) {
d[size + i] = a[i];
}
for(int i = size - 1; i >= 1; i--) {
update(i);
}
}
void set(int p, S val) {
assert(0 <= p && p < n);
p += size;
d[p] = val;
for(int i = 1; i <= log; ++i) {
update(p >> i);
}
}
S get(int p) const {
assert(0 <= p && p < n);
return d[p + size];
}
S operator[](int p) const { return get(p); }
S prod(int l, int r) const {
assert(0 <= l && l <= r && r <= n);
S sml = e(), smr = e();
for(l += size, r += size; l < r; l >>= 1, r >>= 1) {
if(l & 1) {
sml = op(sml, d[l++]);
}
if(r & 1) {
smr = op(d[--r], smr);
}
}
return op(sml, smr);
}
S all_prod() const { return d[1]; }
template<bool (*f)(S)> int max_right(int l) {
return max_right(l, [](S x) { return f(x); });
}
template<class F> int max_right(int l, F f) {
assert(0 <= l && l <= n);
assert(f(e()));
if(l == n) {
return n;
}
l += size;
S sm = e();
do {
while(~l & 1) {
l >>= 1;
}
if(!f(op(sm, d[l]))) {
while(l < size) {
push(l);
l <<= 1;
if(f(op(sm, d[l]))) {
sm = op(sm, d[l++]);
}
}
return l - size;
}
sm = op(sm, d[l++]);
} while((l & -l) != l);
return n;
}
template<bool (*f)(S)> int min_left(int r) {
return min_left(r, [](S x) { return f(x); });
}
template<class F> int min_left(int r, F f) {
assert(0 <= r && r <= n);
assert(f(e()));
if(r == 0) {
return 0;
}
r += size;
S sm = e();
do {
r--;
while(r > 1 && (r & 1)) {
r >>= 1;
}
if(!f(op(d[r], sm))) {
while(r < size) {
push(r);
r = 2 * r + 1;
if(f(op(d[r], sm))) {
sm = op(d[r--], sm);
}
}
return r + 1 - size;
}
sm = op(d[r], sm);
} while((r & -r) != r);
return 0;
}
protected:
int n, size, log;
std::vector<S> d;
void update(int v) {
d[v] = op(d[2 * v], d[2 * v + 1]);
}
virtual void push(int p) {}
};
} // namespace felix
#line 7 "library/data-structure/lazy-segtree.hpp"
namespace felix {
template<class S,
S (*e)(),
S (*op)(S, S),
class F,
F (*id)(),
S (*mapping)(F, S),
F (*composition)(F, F)>
struct lazy_segtree : public segtree<S, e, op> {
using base = segtree<S, e, op>;
public:
lazy_segtree() {}
explicit lazy_segtree(int _n) : lazy_segtree(std::vector<S>(_n, e())) {}
explicit lazy_segtree(const std::vector<S>& v) : base(v), lz(size, id()) {}
void set(int p, S x) {
push_down(p);
base::set(p, x);
}
S get(int p) {
push_down(p);
return base::get(p);
}
S operator[](int p) { return get(p); }
S prod(int l, int r) {
if(l == r) {
return e();
}
push_down(l, r);
return base::prod(l, r);
}
void apply(int p, F f) {
assert(0 <= p && p < n);
push_down(p);
base::set(p, mapping(f, d[p]));
}
void apply(int l, int r, F f) {
assert(0 <= l && l <= r && r <= n);
if(l == r) {
return;
}
push_down(l, r);
l += size, r += size;
{
int l2 = l, r2 = r;
while(l < r) {
if(l & 1) {
all_apply(l++, f);
}
if(r & 1) {
all_apply(--r, f);
}
l >>= 1, r >>= 1;
}
l = l2, r = r2;
}
for(int i = 1; i <= log; i++) {
if(((l >> i) << i) != l) {
update(l >> i);
}
if(((r >> i) << i) != r) {
update((r - 1) >> i);
}
}
}
template<bool (*g)(S)> int max_right(int l) {
return max_right(l, [](S x) { return g(x); });
}
template<class G> int max_right(int l, G g) {
assert(0 <= l && l <= n);
assert(g(e()));
if(l == n) {
return n;
}
push_down(l);
return base::max_right(l, g);
}
template<bool (*g)(S)> int min_left(int r) {
return min_left(r, [](S x) { return g(x); });
}
template<class G> int min_left(int r, G g) {
assert(0 <= r && r <= n);
assert(g(e()));
if(r == 0) {
return 0;
}
push_down(r - 1);
return base::min_left(r, g);
}
protected:
using base::n, base::log, base::size, base::d;
using base::update;
std::vector<F> lz;
virtual void all_apply(int k, F f) {
d[k] = mapping(f, d[k]);
if(k < size) {
lz[k] = composition(f, lz[k]);
}
}
void push(int k) override {
all_apply(2 * k, lz[k]);
all_apply(2 * k + 1, lz[k]);
lz[k] = id();
}
void push_down(int p) {
p += size;
for(int i = log; i >= 1; i--) {
push(p >> i);
}
}
void push_down(int l, int r) {
l += size, r += size;
for(int i = log; i >= 1; i--) {
if(((l >> i) << i) != l) {
push(l >> i);
}
if(((r >> i) << i) != r) {
push((r - 1) >> i);
}
}
}
};
} // namespace felix
#line 6 "library/modint/modint.hpp"
#include <type_traits>
#line 3 "library/misc/type-traits.hpp"
#include <numeric>
#line 5 "library/misc/type-traits.hpp"
namespace felix {
namespace internal {
#ifndef _MSC_VER
template<class T> using is_signed_int128 = typename std::conditional<std::is_same<T, __int128_t>::value || std::is_same<T, __int128>::value, std::true_type, std::false_type>::type;
template<class T> using is_unsigned_int128 = typename std::conditional<std::is_same<T, __uint128_t>::value || std::is_same<T, unsigned __int128>::value, std::true_type, std::false_type>::type;
template<class T> using make_unsigned_int128 = typename std::conditional<std::is_same<T, __int128_t>::value, __uint128_t, unsigned __int128>;
template<class T> using is_integral = typename std::conditional<std::is_integral<T>::value || is_signed_int128<T>::value || is_unsigned_int128<T>::value, std::true_type, std::false_type>::type;
template<class T> using is_signed_int = typename std::conditional<(is_integral<T>::value && std::is_signed<T>::value) || is_signed_int128<T>::value, std::true_type, std::false_type>::type;
template<class T> using is_unsigned_int = typename std::conditional<(is_integral<T>::value && std::is_unsigned<T>::value) || is_unsigned_int128<T>::value, std::true_type, std::false_type>::type;
template<class T> using to_unsigned = typename std::conditional<is_signed_int128<T>::value, make_unsigned_int128<T>, typename std::conditional<std::is_signed<T>::value, std::make_unsigned<T>, std::common_type<T>>::type>::type;
#else
template<class T> using is_integral = typename std::is_integral<T>;
template<class T> using is_signed_int = typename std::conditional<is_integral<T>::value && std::is_signed<T>::value, std::true_type, std::false_type>::type;
template<class T> using is_unsigned_int = typename std::conditional<is_integral<T>::value && std::is_unsigned<T>::value, std::true_type, std::false_type>::type;
template<class T> using to_unsigned = typename std::conditional<is_signed_int<T>::value, std::make_unsigned<T>, std::common_type<T>>::type;
#endif
template<class T> using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;
template<class T> using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;
template<class T> using to_unsigned_t = typename to_unsigned<T>::type;
template<class T> struct safely_multipliable {};
template<> struct safely_multipliable<short> { using type = int; };
template<> struct safely_multipliable<unsigned short> { using type = unsigned int; };
template<> struct safely_multipliable<int> { using type = long long; };
template<> struct safely_multipliable<unsigned int> { using type = unsigned long long; };
template<> struct safely_multipliable<long long> { using type = __int128; };
template<> struct safely_multipliable<unsigned long long> { using type = __uint128_t; };
template<class T> using safely_multipliable_t = typename safely_multipliable<T>::type;
} // namespace internal
} // namespace felix
#line 2 "library/math/safe-mod.hpp"
namespace felix {
namespace internal {
template<class T>
constexpr T safe_mod(T x, T m) {
x %= m;
if(x < 0) {
x += m;
}
return x;
}
} // namespace internal
} // namespace felix
#line 3 "library/math/inv-gcd.hpp"
namespace felix {
namespace internal {
template<class T>
constexpr std::pair<T, T> inv_gcd(T a, T b) {
a = safe_mod(a, b);
if(a == 0) {
return {b, 0};
}
T s = b, t = a;
T m0 = 0, m1 = 1;
while(t) {
T u = s / t;
s -= t * u;
m0 -= m1 * u;
auto tmp = s;
s = t;
t = tmp;
tmp = m0;
m0 = m1;
m1 = tmp;
}
if(m0 < 0) {
m0 += b / s;
}
return {s, m0};
}
} // namespace internal
} // namespace felix
#line 9 "library/modint/modint.hpp"
namespace felix {
template<int id>
struct modint {
public:
static constexpr int mod() { return (id > 0 ? id : md); }
static constexpr void set_mod(int m) {
if(id > 0 || md == m) {
return;
}
md = m;
fact.resize(1);
inv_fact.resize(1);
invs.resize(1);
}
static constexpr void prepare(int n) {
int sz = (int) fact.size();
if(sz == mod()) {
return;
}
n = 1 << std::__lg(2 * n - 1);
if(n < sz) {
return;
}
if(n < (sz - 1) * 2) {
n = std::min((sz - 1) * 2, mod() - 1);
}
fact.resize(n + 1);
inv_fact.resize(n + 1);
invs.resize(n + 1);
for(int i = sz; i <= n; i++) {
fact[i] = fact[i - 1] * i;
}
auto eg = internal::inv_gcd(fact.back().val(), mod());
assert(eg.first == 1);
inv_fact[n] = eg.second;
for(int i = n - 1; i >= sz; i--) {
inv_fact[i] = inv_fact[i + 1] * (i + 1);
}
for(int i = n; i >= sz; i--) {
invs[i] = inv_fact[i] * fact[i - 1];
}
}
constexpr modint() : v(0) {}
template<class T, internal::is_signed_int_t<T>* = nullptr> constexpr modint(T x) : v(x >= 0 ? x % mod() : x % mod() + mod()) {}
template<class T, internal::is_unsigned_int_t<T>* = nullptr> constexpr modint(T x) : v(x % mod()) {}
constexpr int val() const { return v; }
constexpr modint inv() const {
if(id > 0 && v < std::min(mod() >> 1, 1 << 18)) {
prepare(v);
return invs[v];
} else {
auto eg = internal::inv_gcd(v, mod());
assert(eg.first == 1);
return eg.second;
}
}
constexpr modint& operator+=(const modint& rhs) & {
v += rhs.v;
if(v >= mod()) {
v -= mod();
}
return *this;
}
constexpr modint& operator-=(const modint& rhs) & {
v -= rhs.v;
if(v < 0) {
v += mod();
}
return *this;
}
constexpr modint& operator*=(const modint& rhs) & {
v = 1LL * v * rhs.v % mod();
return *this;
}
constexpr modint& operator/=(const modint& rhs) & {
return *this *= rhs.inv();
}
friend constexpr modint operator+(modint lhs, modint rhs) { return lhs += rhs; }
friend constexpr modint operator-(modint lhs, modint rhs) { return lhs -= rhs; }
friend constexpr modint operator*(modint lhs, modint rhs) { return lhs *= rhs; }
friend constexpr modint operator/(modint lhs, modint rhs) { return lhs /= rhs; }
constexpr modint operator+() const { return *this; }
constexpr modint operator-() const { return modint() - *this; }
constexpr bool operator==(const modint& rhs) const { return v == rhs.v; }
constexpr bool operator!=(const modint& rhs) const { return v != rhs.v; }
constexpr modint pow(long long p) const {
modint a(*this), res(1);
if(p < 0) {
a = a.inv();
p = -p;
}
while(p) {
if(p & 1) {
res *= a;
}
a *= a;
p >>= 1;
}
return res;
}
constexpr bool has_sqrt() const {
if(mod() == 2 || v == 0) {
return true;
}
if(pow((mod() - 1) / 2).val() != 1) {
return false;
}
return true;
}
constexpr modint sqrt() const {
if(mod() == 2 || v < 2) {
return *this;
}
assert(pow((mod() - 1) / 2).val() == 1);
modint b = 1;
while(b.pow((mod() - 1) >> 1).val() == 1) {
b += 1;
}
int m = mod() - 1, e = __builtin_ctz(m);
m >>= e;
modint x = modint(*this).pow((m - 1) >> 1);
modint y = modint(*this) * x * x;
x *= v;
modint z = b.pow(m);
while(y.val() != 1) {
int j = 0;
modint t = y;
while(t.val() != 1) {
t *= t;
j++;
}
z = z.pow(1LL << (e - j - 1));
x *= z, z *= z, y *= z;
e = j;
}
return x;
}
friend std::istream& operator>>(std::istream& in, modint& num) {
long long x;
in >> x;
num = modint<id>(x);
return in;
}
friend std::ostream& operator<<(std::ostream& out, const modint& num) {
return out << num.val();
}
public:
static std::vector<modint> fact, inv_fact, invs;
private:
int v;
static int md;
};
template<int id> int modint<id>::md = 998244353;
template<int id> std::vector<modint<id>> modint<id>::fact = {1};
template<int id> std::vector<modint<id>> modint<id>::inv_fact = {1};
template<int id> std::vector<modint<id>> modint<id>::invs = {0};
using modint998244353 = modint<998244353>;
using modint1000000007 = modint<1000000007>;
namespace internal {
template<class T> struct is_modint : public std::false_type {};
template<int id> struct is_modint<modint<id>> : public std::true_type {};
template<class T, class ENABLE = void> struct is_static_modint : public std::false_type {};
template<int id> struct is_static_modint<modint<id>, std::enable_if_t<(id > 0)>> : public std::true_type {};
template<class T> using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;
template<class T, class ENABLE = void> struct is_dynamic_modint : public std::false_type {};
template<int id> struct is_dynamic_modint<modint<id>, std::enable_if_t<(id <= 0)>> : public std::true_type {};
template<class T> using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;
} // namespace internal
} // namespace felix
#line 7 "test/data-structure/lazy-segtree/yosupo-Range-Affine-Range-Sum.test.cpp"
using namespace std;
using namespace felix;
using mint = modint998244353;
struct S {
mint sum;
int size = 0;
S() {}
S(mint a, int b = 1) : sum(a), size(b) {}
};
S e() { return S(); }
S op(S a, S b) {
a.sum += b.sum;
a.size += b.size;
return a;
}
struct F {
mint a, b;
bool bad = true;
F() {}
F(mint x, mint y) : a(x), b(y), bad(false) {}
};
F id() { return F(); }
S mapping(F f, S s) {
if(f.bad || s.size == 0) {
return s;
}
s.sum = f.a * s.sum + f.b * s.size;
return s;
}
F composition(F f, F g) {
if(f.bad || g.bad) {
return f.bad ? g : f;
}
return F(f.a * g.a, f.a * g.b + f.b);
}
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
int n, q;
cin >> n >> q;
vector<S> a(n);
for(int i = 0; i < n; i++) {
cin >> a[i].sum;
a[i].size = 1;
}
lazy_segtree<S, e, op, F, id, mapping, composition> seg(a);
while(q--) {
int type, l, r;
cin >> type >> l >> r;
if(type == 0) {
mint a, b;
cin >> a >> b;
seg.apply(l, r, F(a, b));
} else {
cout << seg.prod(l, r).sum << "\n";
}
}
return 0;
}