This documentation is automatically generated by online-judge-tools/verification-helper
#include "library/geometry/point.hpp"
#pragma once
#include <iostream>
#include <cmath>
namespace felix {
namespace geometry {
template<class T>
struct Point {
T x, y;
Point(T a = 0, T b = 0) : x(a), y(b) {}
Point(const std::pair<T, T>& p) : x(p.first), y(p.second) {}
explicit constexpr operator std::pair<T, T>() const { return std::pair<T, T>(x, y); }
constexpr Point& operator+=(const Point& rhs) & {
x += rhs.x, y += rhs.y;
return *this;
}
constexpr Point& operator-=(const Point& rhs) & {
x -= rhs.x, y -= rhs.y;
return *this;
}
constexpr Point& operator*=(const T& rhs) & {
x *= rhs, y *= rhs;
return *this;
}
constexpr Point& operator/=(const T& rhs) & {
x /= rhs, y /= rhs;
return *this;
}
constexpr Point operator+() const { return *this; }
constexpr Point operator-() const { return Point(-x, -y); }
friend constexpr Point operator+(Point lhs, Point rhs) { return lhs += rhs; }
friend constexpr Point operator-(Point lhs, Point rhs) { return lhs -= rhs; }
friend constexpr Point operator*(Point lhs, T rhs) { return lhs *= rhs; }
friend constexpr Point operator/(Point lhs, T rhs) { return lhs /= rhs; }
constexpr bool operator==(const Point& rhs) const { return x == rhs.x && y == rhs.y; }
constexpr bool operator!=(const Point& rhs) const { return !(*this == rhs); }
// rotate counter-clockwise
constexpr Point rotate(T theta) const {
T sin_t = std::sin(theta), cos_t = std::cos(theta);
return Point(x * cos_t - y * sin_t, x * sin_t + y * cos_t);
}
friend constexpr T abs2(Point p) { return p.x * p.x + p.y * p.y; }
friend constexpr long double abs(Point p) { return std::sqrt(abs2(p)); }
friend constexpr long double angle(Point p) { return std::atan2(p.y, p.x); }
friend constexpr T dot(Point lhs, Point rhs) { return lhs.x * rhs.x + lhs.y * rhs.y; }
friend constexpr T cross(Point lhs, Point rhs) { return lhs.x * rhs.y - lhs.y * rhs.x; }
friend constexpr std::istream& operator>>(std::istream& in, Point& p) {
return in >> p.x >> p.y;
}
};
} // namespace geometry
} // namespace felix
#line 2 "library/geometry/point.hpp"
#include <iostream>
#include <cmath>
namespace felix {
namespace geometry {
template<class T>
struct Point {
T x, y;
Point(T a = 0, T b = 0) : x(a), y(b) {}
Point(const std::pair<T, T>& p) : x(p.first), y(p.second) {}
explicit constexpr operator std::pair<T, T>() const { return std::pair<T, T>(x, y); }
constexpr Point& operator+=(const Point& rhs) & {
x += rhs.x, y += rhs.y;
return *this;
}
constexpr Point& operator-=(const Point& rhs) & {
x -= rhs.x, y -= rhs.y;
return *this;
}
constexpr Point& operator*=(const T& rhs) & {
x *= rhs, y *= rhs;
return *this;
}
constexpr Point& operator/=(const T& rhs) & {
x /= rhs, y /= rhs;
return *this;
}
constexpr Point operator+() const { return *this; }
constexpr Point operator-() const { return Point(-x, -y); }
friend constexpr Point operator+(Point lhs, Point rhs) { return lhs += rhs; }
friend constexpr Point operator-(Point lhs, Point rhs) { return lhs -= rhs; }
friend constexpr Point operator*(Point lhs, T rhs) { return lhs *= rhs; }
friend constexpr Point operator/(Point lhs, T rhs) { return lhs /= rhs; }
constexpr bool operator==(const Point& rhs) const { return x == rhs.x && y == rhs.y; }
constexpr bool operator!=(const Point& rhs) const { return !(*this == rhs); }
// rotate counter-clockwise
constexpr Point rotate(T theta) const {
T sin_t = std::sin(theta), cos_t = std::cos(theta);
return Point(x * cos_t - y * sin_t, x * sin_t + y * cos_t);
}
friend constexpr T abs2(Point p) { return p.x * p.x + p.y * p.y; }
friend constexpr long double abs(Point p) { return std::sqrt(abs2(p)); }
friend constexpr long double angle(Point p) { return std::atan2(p.y, p.x); }
friend constexpr T dot(Point lhs, Point rhs) { return lhs.x * rhs.x + lhs.y * rhs.y; }
friend constexpr T cross(Point lhs, Point rhs) { return lhs.x * rhs.y - lhs.y * rhs.x; }
friend constexpr std::istream& operator>>(std::istream& in, Point& p) {
return in >> p.x >> p.y;
}
};
} // namespace geometry
} // namespace felix